L(s) = 1 | − i·3-s + 2i·5-s + 2i·7-s − 9-s − 2·13-s + 2·15-s + (−1 − 4i)17-s − 4·19-s + 2·21-s + 2i·23-s + 25-s + i·27-s + 2i·29-s + 2i·31-s − 4·35-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.894i·5-s + 0.755i·7-s − 0.333·9-s − 0.554·13-s + 0.516·15-s + (−0.242 − 0.970i)17-s − 0.917·19-s + 0.436·21-s + 0.417i·23-s + 0.200·25-s + 0.192i·27-s + 0.371i·29-s + 0.359i·31-s − 0.676·35-s + ⋯ |
Λ(s)=(=(3264s/2ΓC(s)L(s)(−0.970+0.242i)Λ(2−s)
Λ(s)=(=(3264s/2ΓC(s+1/2)L(s)(−0.970+0.242i)Λ(1−s)
Degree: |
2 |
Conductor: |
3264
= 26⋅3⋅17
|
Sign: |
−0.970+0.242i
|
Analytic conductor: |
26.0631 |
Root analytic conductor: |
5.10521 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3264(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 3264, ( :1/2), −0.970+0.242i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 17 | 1+(1+4i)T |
good | 5 | 1−2iT−5T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1−11T2 |
| 13 | 1+2T+13T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−2iT−23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1−41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1+47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1+12T+67T2 |
| 71 | 1−2iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1+10iT−79T2 |
| 83 | 1+12T+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.308214659363619700251168385294, −7.34927671293210359354178302810, −6.91196014220385073134643908580, −6.16862100960228138437264922416, −5.36373660397584487843703308909, −4.50696747772029112664654524817, −3.20349456927637199665081096295, −2.63384933237430905026090025816, −1.71970836998179909189495326566, 0,
1.33236530530530222750183972939, 2.53177668592740285158076870180, 3.75195544275812733848703153186, 4.39562714406982276701382240793, 4.95037755790314960174178662396, 5.93011284460378139820141700956, 6.69344832447220363833996743583, 7.62681910073560329533321596098, 8.428602581108460320200220546494