Properties

Label 2-3264-17.16-c1-0-57
Degree $2$
Conductor $3264$
Sign $-0.970 + 0.242i$
Analytic cond. $26.0631$
Root an. cond. $5.10521$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + 2i·5-s + 2i·7-s − 9-s − 2·13-s + 2·15-s + (−1 − 4i)17-s − 4·19-s + 2·21-s + 2i·23-s + 25-s + i·27-s + 2i·29-s + 2i·31-s − 4·35-s + ⋯
L(s)  = 1  − 0.577i·3-s + 0.894i·5-s + 0.755i·7-s − 0.333·9-s − 0.554·13-s + 0.516·15-s + (−0.242 − 0.970i)17-s − 0.917·19-s + 0.436·21-s + 0.417i·23-s + 0.200·25-s + 0.192i·27-s + 0.371i·29-s + 0.359i·31-s − 0.676·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 + 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3264\)    =    \(2^{6} \cdot 3 \cdot 17\)
Sign: $-0.970 + 0.242i$
Analytic conductor: \(26.0631\)
Root analytic conductor: \(5.10521\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3264} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 3264,\ (\ :1/2),\ -0.970 + 0.242i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
17 \( 1 + (1 + 4i)T \)
good5 \( 1 - 2iT - 5T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 - 2iT - 29T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 + 6iT - 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 - 2iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 10iT - 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.308214659363619700251168385294, −7.34927671293210359354178302810, −6.91196014220385073134643908580, −6.16862100960228138437264922416, −5.36373660397584487843703308909, −4.50696747772029112664654524817, −3.20349456927637199665081096295, −2.63384933237430905026090025816, −1.71970836998179909189495326566, 0, 1.33236530530530222750183972939, 2.53177668592740285158076870180, 3.75195544275812733848703153186, 4.39562714406982276701382240793, 4.95037755790314960174178662396, 5.93011284460378139820141700956, 6.69344832447220363833996743583, 7.62681910073560329533321596098, 8.428602581108460320200220546494

Graph of the $Z$-function along the critical line