L(s) = 1 | − i·3-s + 3.60i·5-s − 4i·7-s − 9-s + 3i·11-s + 13-s + 3.60·15-s + (2 + 3.60i)17-s + 3.60·19-s − 4·21-s − 7i·23-s − 7.99·25-s + i·27-s − 7.21i·29-s + 2i·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.61i·5-s − 1.51i·7-s − 0.333·9-s + 0.904i·11-s + 0.277·13-s + 0.930·15-s + (0.485 + 0.874i)17-s + 0.827·19-s − 0.872·21-s − 1.45i·23-s − 1.59·25-s + 0.192i·27-s − 1.33i·29-s + 0.359i·31-s + ⋯ |
Λ(s)=(=(3264s/2ΓC(s)L(s)(0.874−0.485i)Λ(2−s)
Λ(s)=(=(3264s/2ΓC(s+1/2)L(s)(0.874−0.485i)Λ(1−s)
Degree: |
2 |
Conductor: |
3264
= 26⋅3⋅17
|
Sign: |
0.874−0.485i
|
Analytic conductor: |
26.0631 |
Root analytic conductor: |
5.10521 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3264(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3264, ( :1/2), 0.874−0.485i)
|
Particular Values
L(1) |
≈ |
1.803630292 |
L(21) |
≈ |
1.803630292 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 17 | 1+(−2−3.60i)T |
good | 5 | 1−3.60iT−5T2 |
| 7 | 1+4iT−7T2 |
| 11 | 1−3iT−11T2 |
| 13 | 1−T+13T2 |
| 19 | 1−3.60T+19T2 |
| 23 | 1+7iT−23T2 |
| 29 | 1+7.21iT−29T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1−7.21iT−37T2 |
| 41 | 1−10.8iT−41T2 |
| 43 | 1+3.60T+43T2 |
| 47 | 1+47T2 |
| 53 | 1−4T+53T2 |
| 59 | 1−14.4T+59T2 |
| 61 | 1−61T2 |
| 67 | 1+67T2 |
| 71 | 1−8iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1+4iT−79T2 |
| 83 | 1+83T2 |
| 89 | 1−12T+89T2 |
| 97 | 1+7.21iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.374247205712808368151156336301, −7.75968841831120881833751542036, −7.13888571941631325479851450670, −6.63312572778628798154679315134, −6.08124806272107904385991961192, −4.72864426229455109336794847624, −3.87485800099550600804218691784, −3.12124941639114764390059310227, −2.17428672331473519914695527605, −0.985162184160150530291302550418,
0.68910440224044624790330607034, 1.88864760368510675509188852278, 3.10979092486744393970620329813, 3.86275130477383479128392296149, 5.12691928151590280029262630769, 5.39240957272455196914688803441, 5.81791488746789163213882576182, 7.22738570523916595852554934127, 8.171785788427623670192591178436, 8.777233650745520825554710636498