L(s) = 1 | − i·3-s + 3.60i·5-s − 4i·7-s − 9-s + 3i·11-s + 13-s + 3.60·15-s + (2 + 3.60i)17-s + 3.60·19-s − 4·21-s − 7i·23-s − 7.99·25-s + i·27-s − 7.21i·29-s + 2i·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.61i·5-s − 1.51i·7-s − 0.333·9-s + 0.904i·11-s + 0.277·13-s + 0.930·15-s + (0.485 + 0.874i)17-s + 0.827·19-s − 0.872·21-s − 1.45i·23-s − 1.59·25-s + 0.192i·27-s − 1.33i·29-s + 0.359i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 - 0.485i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.874 - 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.803630292\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.803630292\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 17 | \( 1 + (-2 - 3.60i)T \) |
good | 5 | \( 1 - 3.60iT - 5T^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 - 3iT - 11T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 19 | \( 1 - 3.60T + 19T^{2} \) |
| 23 | \( 1 + 7iT - 23T^{2} \) |
| 29 | \( 1 + 7.21iT - 29T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 - 7.21iT - 37T^{2} \) |
| 41 | \( 1 - 10.8iT - 41T^{2} \) |
| 43 | \( 1 + 3.60T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 4T + 53T^{2} \) |
| 59 | \( 1 - 14.4T + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 - 8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 12T + 89T^{2} \) |
| 97 | \( 1 + 7.21iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.374247205712808368151156336301, −7.75968841831120881833751542036, −7.13888571941631325479851450670, −6.63312572778628798154679315134, −6.08124806272107904385991961192, −4.72864426229455109336794847624, −3.87485800099550600804218691784, −3.12124941639114764390059310227, −2.17428672331473519914695527605, −0.985162184160150530291302550418,
0.68910440224044624790330607034, 1.88864760368510675509188852278, 3.10979092486744393970620329813, 3.86275130477383479128392296149, 5.12691928151590280029262630769, 5.39240957272455196914688803441, 5.81791488746789163213882576182, 7.22738570523916595852554934127, 8.171785788427623670192591178436, 8.777233650745520825554710636498