Properties

Label 2-3264-17.16-c1-0-26
Degree $2$
Conductor $3264$
Sign $0.874 - 0.485i$
Analytic cond. $26.0631$
Root an. cond. $5.10521$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + 3.60i·5-s − 4i·7-s − 9-s + 3i·11-s + 13-s + 3.60·15-s + (2 + 3.60i)17-s + 3.60·19-s − 4·21-s − 7i·23-s − 7.99·25-s + i·27-s − 7.21i·29-s + 2i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 1.61i·5-s − 1.51i·7-s − 0.333·9-s + 0.904i·11-s + 0.277·13-s + 0.930·15-s + (0.485 + 0.874i)17-s + 0.827·19-s − 0.872·21-s − 1.45i·23-s − 1.59·25-s + 0.192i·27-s − 1.33i·29-s + 0.359i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 - 0.485i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.874 - 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3264\)    =    \(2^{6} \cdot 3 \cdot 17\)
Sign: $0.874 - 0.485i$
Analytic conductor: \(26.0631\)
Root analytic conductor: \(5.10521\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3264} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3264,\ (\ :1/2),\ 0.874 - 0.485i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.803630292\)
\(L(\frac12)\) \(\approx\) \(1.803630292\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
17 \( 1 + (-2 - 3.60i)T \)
good5 \( 1 - 3.60iT - 5T^{2} \)
7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 - 3iT - 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
19 \( 1 - 3.60T + 19T^{2} \)
23 \( 1 + 7iT - 23T^{2} \)
29 \( 1 + 7.21iT - 29T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 - 7.21iT - 37T^{2} \)
41 \( 1 - 10.8iT - 41T^{2} \)
43 \( 1 + 3.60T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 4T + 53T^{2} \)
59 \( 1 - 14.4T + 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 - 8iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 4iT - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 + 7.21iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.374247205712808368151156336301, −7.75968841831120881833751542036, −7.13888571941631325479851450670, −6.63312572778628798154679315134, −6.08124806272107904385991961192, −4.72864426229455109336794847624, −3.87485800099550600804218691784, −3.12124941639114764390059310227, −2.17428672331473519914695527605, −0.985162184160150530291302550418, 0.68910440224044624790330607034, 1.88864760368510675509188852278, 3.10979092486744393970620329813, 3.86275130477383479128392296149, 5.12691928151590280029262630769, 5.39240957272455196914688803441, 5.81791488746789163213882576182, 7.22738570523916595852554934127, 8.171785788427623670192591178436, 8.777233650745520825554710636498

Graph of the $Z$-function along the critical line