Properties

Label 2-3267-1.1-c1-0-141
Degree $2$
Conductor $3267$
Sign $-1$
Analytic cond. $26.0871$
Root an. cond. $5.10755$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.46·2-s + 4.05·4-s − 0.989·5-s − 4.32·7-s + 5.05·8-s − 2.43·10-s − 3.61·13-s − 10.6·14-s + 4.32·16-s + 2.64·17-s + 3.82·19-s − 4.01·20-s − 3.45·23-s − 4.02·25-s − 8.90·26-s − 17.5·28-s − 10.4·29-s − 1.68·31-s + 0.530·32-s + 6.49·34-s + 4.27·35-s + 3.23·37-s + 9.41·38-s − 4.99·40-s − 11.9·41-s + 2.12·43-s − 8.48·46-s + ⋯
L(s)  = 1  + 1.73·2-s + 2.02·4-s − 0.442·5-s − 1.63·7-s + 1.78·8-s − 0.770·10-s − 1.00·13-s − 2.84·14-s + 1.08·16-s + 0.640·17-s + 0.878·19-s − 0.897·20-s − 0.719·23-s − 0.804·25-s − 1.74·26-s − 3.31·28-s − 1.93·29-s − 0.303·31-s + 0.0938·32-s + 1.11·34-s + 0.723·35-s + 0.532·37-s + 1.52·38-s − 0.790·40-s − 1.85·41-s + 0.323·43-s − 1.25·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3267\)    =    \(3^{3} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(26.0871\)
Root analytic conductor: \(5.10755\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3267,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - 2.46T + 2T^{2} \)
5 \( 1 + 0.989T + 5T^{2} \)
7 \( 1 + 4.32T + 7T^{2} \)
13 \( 1 + 3.61T + 13T^{2} \)
17 \( 1 - 2.64T + 17T^{2} \)
19 \( 1 - 3.82T + 19T^{2} \)
23 \( 1 + 3.45T + 23T^{2} \)
29 \( 1 + 10.4T + 29T^{2} \)
31 \( 1 + 1.68T + 31T^{2} \)
37 \( 1 - 3.23T + 37T^{2} \)
41 \( 1 + 11.9T + 41T^{2} \)
43 \( 1 - 2.12T + 43T^{2} \)
47 \( 1 + 4.29T + 47T^{2} \)
53 \( 1 - 9.48T + 53T^{2} \)
59 \( 1 + 6.47T + 59T^{2} \)
61 \( 1 - 4.81T + 61T^{2} \)
67 \( 1 - 0.854T + 67T^{2} \)
71 \( 1 - 3.77T + 71T^{2} \)
73 \( 1 + 11.4T + 73T^{2} \)
79 \( 1 + 6.14T + 79T^{2} \)
83 \( 1 - 3.36T + 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 + 0.371T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83335500762773034168967009979, −7.24732254124379567802892139683, −6.61496793502611444640305690751, −5.74081677833267572692929905436, −5.34032731467807632608962212363, −4.20960615043554006363174556626, −3.55933815025587070948246983403, −3.04990253267824224361840593522, −2.02368594789201115214186035171, 0, 2.02368594789201115214186035171, 3.04990253267824224361840593522, 3.55933815025587070948246983403, 4.20960615043554006363174556626, 5.34032731467807632608962212363, 5.74081677833267572692929905436, 6.61496793502611444640305690751, 7.24732254124379567802892139683, 7.83335500762773034168967009979

Graph of the $Z$-function along the critical line