Properties

Label 3267.2.a.bi.1.8
Level $3267$
Weight $2$
Character 3267.1
Self dual yes
Analytic conductor $26.087$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,2,Mod(1,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3267.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.0871263404\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.234144800000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{6} + 51x^{4} - 55x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 297)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.46033\) of defining polynomial
Character \(\chi\) \(=\) 3267.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46033 q^{2} +4.05323 q^{4} -0.989783 q^{5} -4.32219 q^{7} +5.05161 q^{8} -2.43519 q^{10} -3.61803 q^{13} -10.6340 q^{14} +4.32219 q^{16} +2.64130 q^{17} +3.82722 q^{19} -4.01181 q^{20} -3.45011 q^{23} -4.02033 q^{25} -8.90156 q^{26} -17.5188 q^{28} -10.4221 q^{29} -1.68787 q^{31} +0.530785 q^{32} +6.49848 q^{34} +4.27803 q^{35} +3.23607 q^{37} +9.41623 q^{38} -5.00000 q^{40} -11.9075 q^{41} +2.12307 q^{43} -8.48842 q^{46} -4.29980 q^{47} +11.6813 q^{49} -9.89134 q^{50} -14.6647 q^{52} +9.48236 q^{53} -21.8340 q^{56} -25.6419 q^{58} -6.47214 q^{59} +4.81061 q^{61} -4.15273 q^{62} -7.33847 q^{64} +3.58107 q^{65} +0.854102 q^{67} +10.7058 q^{68} +10.5254 q^{70} +3.77816 q^{71} -11.4083 q^{73} +7.96180 q^{74} +15.5126 q^{76} -6.14340 q^{79} -4.27803 q^{80} -29.2963 q^{82} +3.36003 q^{83} -2.61432 q^{85} +5.22344 q^{86} +13.2605 q^{89} +15.6378 q^{91} -13.9841 q^{92} -10.5789 q^{94} -3.78812 q^{95} -0.371367 q^{97} +28.7399 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 10 q^{4} - 10 q^{7} - 6 q^{10} - 20 q^{13} + 10 q^{16} - 14 q^{19} + 6 q^{25} - 26 q^{28} + 2 q^{31} - 24 q^{34} + 8 q^{37} - 40 q^{40} - 12 q^{43} - 32 q^{46} + 22 q^{49} - 30 q^{52} - 62 q^{58}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46033 1.73972 0.869858 0.493302i \(-0.164210\pi\)
0.869858 + 0.493302i \(0.164210\pi\)
\(3\) 0 0
\(4\) 4.05323 2.02661
\(5\) −0.989783 −0.442644 −0.221322 0.975201i \(-0.571037\pi\)
−0.221322 + 0.975201i \(0.571037\pi\)
\(6\) 0 0
\(7\) −4.32219 −1.63363 −0.816817 0.576897i \(-0.804263\pi\)
−0.816817 + 0.576897i \(0.804263\pi\)
\(8\) 5.05161 1.78602
\(9\) 0 0
\(10\) −2.43519 −0.770075
\(11\) 0 0
\(12\) 0 0
\(13\) −3.61803 −1.00346 −0.501731 0.865024i \(-0.667303\pi\)
−0.501731 + 0.865024i \(0.667303\pi\)
\(14\) −10.6340 −2.84206
\(15\) 0 0
\(16\) 4.32219 1.08055
\(17\) 2.64130 0.640610 0.320305 0.947314i \(-0.396215\pi\)
0.320305 + 0.947314i \(0.396215\pi\)
\(18\) 0 0
\(19\) 3.82722 0.878025 0.439012 0.898481i \(-0.355328\pi\)
0.439012 + 0.898481i \(0.355328\pi\)
\(20\) −4.01181 −0.897069
\(21\) 0 0
\(22\) 0 0
\(23\) −3.45011 −0.719398 −0.359699 0.933068i \(-0.617121\pi\)
−0.359699 + 0.933068i \(0.617121\pi\)
\(24\) 0 0
\(25\) −4.02033 −0.804066
\(26\) −8.90156 −1.74574
\(27\) 0 0
\(28\) −17.5188 −3.31074
\(29\) −10.4221 −1.93534 −0.967670 0.252219i \(-0.918840\pi\)
−0.967670 + 0.252219i \(0.918840\pi\)
\(30\) 0 0
\(31\) −1.68787 −0.303151 −0.151576 0.988446i \(-0.548435\pi\)
−0.151576 + 0.988446i \(0.548435\pi\)
\(32\) 0.530785 0.0938305
\(33\) 0 0
\(34\) 6.49848 1.11448
\(35\) 4.27803 0.723119
\(36\) 0 0
\(37\) 3.23607 0.532006 0.266003 0.963972i \(-0.414297\pi\)
0.266003 + 0.963972i \(0.414297\pi\)
\(38\) 9.41623 1.52751
\(39\) 0 0
\(40\) −5.00000 −0.790569
\(41\) −11.9075 −1.85963 −0.929817 0.368021i \(-0.880035\pi\)
−0.929817 + 0.368021i \(0.880035\pi\)
\(42\) 0 0
\(43\) 2.12307 0.323764 0.161882 0.986810i \(-0.448244\pi\)
0.161882 + 0.986810i \(0.448244\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −8.48842 −1.25155
\(47\) −4.29980 −0.627190 −0.313595 0.949557i \(-0.601533\pi\)
−0.313595 + 0.949557i \(0.601533\pi\)
\(48\) 0 0
\(49\) 11.6813 1.66876
\(50\) −9.89134 −1.39885
\(51\) 0 0
\(52\) −14.6647 −2.03363
\(53\) 9.48236 1.30250 0.651251 0.758862i \(-0.274244\pi\)
0.651251 + 0.758862i \(0.274244\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −21.8340 −2.91770
\(57\) 0 0
\(58\) −25.6419 −3.36694
\(59\) −6.47214 −0.842601 −0.421301 0.906921i \(-0.638426\pi\)
−0.421301 + 0.906921i \(0.638426\pi\)
\(60\) 0 0
\(61\) 4.81061 0.615935 0.307968 0.951397i \(-0.400351\pi\)
0.307968 + 0.951397i \(0.400351\pi\)
\(62\) −4.15273 −0.527397
\(63\) 0 0
\(64\) −7.33847 −0.917309
\(65\) 3.58107 0.444177
\(66\) 0 0
\(67\) 0.854102 0.104345 0.0521726 0.998638i \(-0.483385\pi\)
0.0521726 + 0.998638i \(0.483385\pi\)
\(68\) 10.7058 1.29827
\(69\) 0 0
\(70\) 10.5254 1.25802
\(71\) 3.77816 0.448385 0.224192 0.974545i \(-0.428026\pi\)
0.224192 + 0.974545i \(0.428026\pi\)
\(72\) 0 0
\(73\) −11.4083 −1.33524 −0.667621 0.744501i \(-0.732687\pi\)
−0.667621 + 0.744501i \(0.732687\pi\)
\(74\) 7.96180 0.925540
\(75\) 0 0
\(76\) 15.5126 1.77942
\(77\) 0 0
\(78\) 0 0
\(79\) −6.14340 −0.691186 −0.345593 0.938384i \(-0.612322\pi\)
−0.345593 + 0.938384i \(0.612322\pi\)
\(80\) −4.27803 −0.478298
\(81\) 0 0
\(82\) −29.2963 −3.23524
\(83\) 3.36003 0.368812 0.184406 0.982850i \(-0.440964\pi\)
0.184406 + 0.982850i \(0.440964\pi\)
\(84\) 0 0
\(85\) −2.61432 −0.283562
\(86\) 5.22344 0.563258
\(87\) 0 0
\(88\) 0 0
\(89\) 13.2605 1.40561 0.702806 0.711381i \(-0.251930\pi\)
0.702806 + 0.711381i \(0.251930\pi\)
\(90\) 0 0
\(91\) 15.6378 1.63929
\(92\) −13.9841 −1.45794
\(93\) 0 0
\(94\) −10.5789 −1.09113
\(95\) −3.78812 −0.388653
\(96\) 0 0
\(97\) −0.371367 −0.0377066 −0.0188533 0.999822i \(-0.506002\pi\)
−0.0188533 + 0.999822i \(0.506002\pi\)
\(98\) 28.7399 2.90317
\(99\) 0 0
\(100\) −16.2953 −1.62953
\(101\) 12.9943 1.29298 0.646491 0.762922i \(-0.276236\pi\)
0.646491 + 0.762922i \(0.276236\pi\)
\(102\) 0 0
\(103\) −11.8041 −1.16309 −0.581544 0.813515i \(-0.697551\pi\)
−0.581544 + 0.813515i \(0.697551\pi\)
\(104\) −18.2769 −1.79220
\(105\) 0 0
\(106\) 23.3298 2.26599
\(107\) −4.72788 −0.457061 −0.228531 0.973537i \(-0.573392\pi\)
−0.228531 + 0.973537i \(0.573392\pi\)
\(108\) 0 0
\(109\) −16.1864 −1.55037 −0.775186 0.631733i \(-0.782344\pi\)
−0.775186 + 0.631733i \(0.782344\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −18.6813 −1.76522
\(113\) −0.849683 −0.0799315 −0.0399657 0.999201i \(-0.512725\pi\)
−0.0399657 + 0.999201i \(0.512725\pi\)
\(114\) 0 0
\(115\) 3.41486 0.318437
\(116\) −42.2432 −3.92219
\(117\) 0 0
\(118\) −15.9236 −1.46589
\(119\) −11.4162 −1.04652
\(120\) 0 0
\(121\) 0 0
\(122\) 11.8357 1.07155
\(123\) 0 0
\(124\) −6.84133 −0.614370
\(125\) 8.92817 0.798559
\(126\) 0 0
\(127\) −11.6546 −1.03418 −0.517091 0.855930i \(-0.672985\pi\)
−0.517091 + 0.855930i \(0.672985\pi\)
\(128\) −19.1166 −1.68969
\(129\) 0 0
\(130\) 8.81061 0.772741
\(131\) −0.242802 −0.0212137 −0.0106068 0.999944i \(-0.503376\pi\)
−0.0106068 + 0.999944i \(0.503376\pi\)
\(132\) 0 0
\(133\) −16.5420 −1.43437
\(134\) 2.10137 0.181531
\(135\) 0 0
\(136\) 13.3429 1.14414
\(137\) −0.454689 −0.0388467 −0.0194234 0.999811i \(-0.506183\pi\)
−0.0194234 + 0.999811i \(0.506183\pi\)
\(138\) 0 0
\(139\) 17.8410 1.51325 0.756627 0.653847i \(-0.226846\pi\)
0.756627 + 0.653847i \(0.226846\pi\)
\(140\) 17.3398 1.46548
\(141\) 0 0
\(142\) 9.29551 0.780062
\(143\) 0 0
\(144\) 0 0
\(145\) 10.3156 0.856667
\(146\) −28.0682 −2.32294
\(147\) 0 0
\(148\) 13.1165 1.07817
\(149\) 15.9384 1.30572 0.652862 0.757477i \(-0.273568\pi\)
0.652862 + 0.757477i \(0.273568\pi\)
\(150\) 0 0
\(151\) −6.05356 −0.492631 −0.246316 0.969190i \(-0.579220\pi\)
−0.246316 + 0.969190i \(0.579220\pi\)
\(152\) 19.3336 1.56817
\(153\) 0 0
\(154\) 0 0
\(155\) 1.67063 0.134188
\(156\) 0 0
\(157\) 7.48187 0.597118 0.298559 0.954391i \(-0.403494\pi\)
0.298559 + 0.954391i \(0.403494\pi\)
\(158\) −15.1148 −1.20247
\(159\) 0 0
\(160\) −0.525362 −0.0415335
\(161\) 14.9120 1.17523
\(162\) 0 0
\(163\) 13.9766 1.09473 0.547367 0.836893i \(-0.315630\pi\)
0.547367 + 0.836893i \(0.315630\pi\)
\(164\) −48.2637 −3.76876
\(165\) 0 0
\(166\) 8.26679 0.641628
\(167\) 6.39121 0.494567 0.247283 0.968943i \(-0.420462\pi\)
0.247283 + 0.968943i \(0.420462\pi\)
\(168\) 0 0
\(169\) 0.0901699 0.00693615
\(170\) −6.43208 −0.493318
\(171\) 0 0
\(172\) 8.60526 0.656145
\(173\) 7.84564 0.596493 0.298247 0.954489i \(-0.403598\pi\)
0.298247 + 0.954489i \(0.403598\pi\)
\(174\) 0 0
\(175\) 17.3766 1.31355
\(176\) 0 0
\(177\) 0 0
\(178\) 32.6253 2.44537
\(179\) 4.87495 0.364371 0.182185 0.983264i \(-0.441683\pi\)
0.182185 + 0.983264i \(0.441683\pi\)
\(180\) 0 0
\(181\) 9.04668 0.672434 0.336217 0.941785i \(-0.390852\pi\)
0.336217 + 0.941785i \(0.390852\pi\)
\(182\) 38.4742 2.85190
\(183\) 0 0
\(184\) −17.4286 −1.28486
\(185\) −3.20300 −0.235490
\(186\) 0 0
\(187\) 0 0
\(188\) −17.4280 −1.27107
\(189\) 0 0
\(190\) −9.32002 −0.676145
\(191\) 18.7676 1.35798 0.678989 0.734148i \(-0.262418\pi\)
0.678989 + 0.734148i \(0.262418\pi\)
\(192\) 0 0
\(193\) 17.3025 1.24546 0.622732 0.782435i \(-0.286023\pi\)
0.622732 + 0.782435i \(0.286023\pi\)
\(194\) −0.913687 −0.0655989
\(195\) 0 0
\(196\) 47.3470 3.38193
\(197\) −6.06800 −0.432327 −0.216164 0.976357i \(-0.569354\pi\)
−0.216164 + 0.976357i \(0.569354\pi\)
\(198\) 0 0
\(199\) −10.1108 −0.716738 −0.358369 0.933580i \(-0.616667\pi\)
−0.358369 + 0.933580i \(0.616667\pi\)
\(200\) −20.3092 −1.43607
\(201\) 0 0
\(202\) 31.9703 2.24942
\(203\) 45.0464 3.16164
\(204\) 0 0
\(205\) 11.7858 0.823157
\(206\) −29.0419 −2.02344
\(207\) 0 0
\(208\) −15.6378 −1.08429
\(209\) 0 0
\(210\) 0 0
\(211\) −14.7414 −1.01484 −0.507421 0.861698i \(-0.669401\pi\)
−0.507421 + 0.861698i \(0.669401\pi\)
\(212\) 38.4342 2.63967
\(213\) 0 0
\(214\) −11.6321 −0.795157
\(215\) −2.10137 −0.143312
\(216\) 0 0
\(217\) 7.29531 0.495238
\(218\) −39.8238 −2.69721
\(219\) 0 0
\(220\) 0 0
\(221\) −9.55633 −0.642828
\(222\) 0 0
\(223\) 0.613986 0.0411155 0.0205578 0.999789i \(-0.493456\pi\)
0.0205578 + 0.999789i \(0.493456\pi\)
\(224\) −2.29415 −0.153285
\(225\) 0 0
\(226\) −2.09050 −0.139058
\(227\) 11.6103 0.770606 0.385303 0.922790i \(-0.374097\pi\)
0.385303 + 0.922790i \(0.374097\pi\)
\(228\) 0 0
\(229\) 0.813441 0.0537537 0.0268768 0.999639i \(-0.491444\pi\)
0.0268768 + 0.999639i \(0.491444\pi\)
\(230\) 8.40169 0.553991
\(231\) 0 0
\(232\) −52.6486 −3.45655
\(233\) −17.2514 −1.13018 −0.565088 0.825031i \(-0.691158\pi\)
−0.565088 + 0.825031i \(0.691158\pi\)
\(234\) 0 0
\(235\) 4.25586 0.277622
\(236\) −26.2331 −1.70763
\(237\) 0 0
\(238\) −28.0877 −1.82065
\(239\) −0.199752 −0.0129209 −0.00646044 0.999979i \(-0.502056\pi\)
−0.00646044 + 0.999979i \(0.502056\pi\)
\(240\) 0 0
\(241\) −14.8309 −0.955345 −0.477672 0.878538i \(-0.658519\pi\)
−0.477672 + 0.878538i \(0.658519\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 19.4985 1.24826
\(245\) −11.5620 −0.738667
\(246\) 0 0
\(247\) −13.8470 −0.881065
\(248\) −8.52649 −0.541432
\(249\) 0 0
\(250\) 21.9662 1.38927
\(251\) −8.52649 −0.538187 −0.269094 0.963114i \(-0.586724\pi\)
−0.269094 + 0.963114i \(0.586724\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −28.6743 −1.79918
\(255\) 0 0
\(256\) −32.3563 −2.02227
\(257\) 12.9986 0.810831 0.405416 0.914132i \(-0.367127\pi\)
0.405416 + 0.914132i \(0.367127\pi\)
\(258\) 0 0
\(259\) −13.9869 −0.869104
\(260\) 14.5149 0.900174
\(261\) 0 0
\(262\) −0.597372 −0.0369058
\(263\) −14.8529 −0.915868 −0.457934 0.888986i \(-0.651410\pi\)
−0.457934 + 0.888986i \(0.651410\pi\)
\(264\) 0 0
\(265\) −9.38548 −0.576545
\(266\) −40.6987 −2.49540
\(267\) 0 0
\(268\) 3.46187 0.211467
\(269\) 3.81173 0.232405 0.116203 0.993226i \(-0.462928\pi\)
0.116203 + 0.993226i \(0.462928\pi\)
\(270\) 0 0
\(271\) 13.8375 0.840568 0.420284 0.907393i \(-0.361931\pi\)
0.420284 + 0.907393i \(0.361931\pi\)
\(272\) 11.4162 0.692210
\(273\) 0 0
\(274\) −1.11869 −0.0675823
\(275\) 0 0
\(276\) 0 0
\(277\) −2.45802 −0.147688 −0.0738442 0.997270i \(-0.523527\pi\)
−0.0738442 + 0.997270i \(0.523527\pi\)
\(278\) 43.8948 2.63263
\(279\) 0 0
\(280\) 21.6109 1.29150
\(281\) 19.9206 1.18836 0.594182 0.804331i \(-0.297476\pi\)
0.594182 + 0.804331i \(0.297476\pi\)
\(282\) 0 0
\(283\) −7.18853 −0.427313 −0.213657 0.976909i \(-0.568537\pi\)
−0.213657 + 0.976909i \(0.568537\pi\)
\(284\) 15.3137 0.908702
\(285\) 0 0
\(286\) 0 0
\(287\) 51.4664 3.03796
\(288\) 0 0
\(289\) −10.0235 −0.589618
\(290\) 25.3799 1.49036
\(291\) 0 0
\(292\) −46.2405 −2.70602
\(293\) −17.0618 −0.996760 −0.498380 0.866959i \(-0.666072\pi\)
−0.498380 + 0.866959i \(0.666072\pi\)
\(294\) 0 0
\(295\) 6.40601 0.372973
\(296\) 16.3474 0.950172
\(297\) 0 0
\(298\) 39.2137 2.27159
\(299\) 12.4826 0.721889
\(300\) 0 0
\(301\) −9.17629 −0.528913
\(302\) −14.8938 −0.857039
\(303\) 0 0
\(304\) 16.5420 0.948747
\(305\) −4.76146 −0.272640
\(306\) 0 0
\(307\) −7.48842 −0.427387 −0.213693 0.976901i \(-0.568549\pi\)
−0.213693 + 0.976901i \(0.568549\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.11030 0.233449
\(311\) −10.5208 −0.596583 −0.298291 0.954475i \(-0.596417\pi\)
−0.298291 + 0.954475i \(0.596417\pi\)
\(312\) 0 0
\(313\) −10.4347 −0.589802 −0.294901 0.955528i \(-0.595287\pi\)
−0.294901 + 0.955528i \(0.595287\pi\)
\(314\) 18.4079 1.03882
\(315\) 0 0
\(316\) −24.9006 −1.40077
\(317\) −12.7881 −0.718250 −0.359125 0.933290i \(-0.616925\pi\)
−0.359125 + 0.933290i \(0.616925\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 7.26349 0.406042
\(321\) 0 0
\(322\) 36.6886 2.04457
\(323\) 10.1089 0.562472
\(324\) 0 0
\(325\) 14.5457 0.806850
\(326\) 34.3871 1.90453
\(327\) 0 0
\(328\) −60.1520 −3.32134
\(329\) 18.5845 1.02460
\(330\) 0 0
\(331\) 16.3849 0.900598 0.450299 0.892878i \(-0.351317\pi\)
0.450299 + 0.892878i \(0.351317\pi\)
\(332\) 13.6190 0.747438
\(333\) 0 0
\(334\) 15.7245 0.860406
\(335\) −0.845375 −0.0461878
\(336\) 0 0
\(337\) −29.0673 −1.58340 −0.791699 0.610911i \(-0.790803\pi\)
−0.791699 + 0.610911i \(0.790803\pi\)
\(338\) 0.221848 0.0120669
\(339\) 0 0
\(340\) −10.5964 −0.574671
\(341\) 0 0
\(342\) 0 0
\(343\) −20.2336 −1.09251
\(344\) 10.7249 0.578248
\(345\) 0 0
\(346\) 19.3029 1.03773
\(347\) −21.5826 −1.15862 −0.579308 0.815109i \(-0.696677\pi\)
−0.579308 + 0.815109i \(0.696677\pi\)
\(348\) 0 0
\(349\) −24.2003 −1.29541 −0.647707 0.761889i \(-0.724272\pi\)
−0.647707 + 0.761889i \(0.724272\pi\)
\(350\) 42.7523 2.28520
\(351\) 0 0
\(352\) 0 0
\(353\) 20.9800 1.11666 0.558328 0.829621i \(-0.311443\pi\)
0.558328 + 0.829621i \(0.311443\pi\)
\(354\) 0 0
\(355\) −3.73955 −0.198475
\(356\) 53.7479 2.84863
\(357\) 0 0
\(358\) 11.9940 0.633902
\(359\) 15.6835 0.827741 0.413871 0.910336i \(-0.364177\pi\)
0.413871 + 0.910336i \(0.364177\pi\)
\(360\) 0 0
\(361\) −4.35238 −0.229073
\(362\) 22.2578 1.16984
\(363\) 0 0
\(364\) 63.3837 3.32221
\(365\) 11.2917 0.591037
\(366\) 0 0
\(367\) −8.19454 −0.427752 −0.213876 0.976861i \(-0.568609\pi\)
−0.213876 + 0.976861i \(0.568609\pi\)
\(368\) −14.9120 −0.777344
\(369\) 0 0
\(370\) −7.88045 −0.409685
\(371\) −40.9846 −2.12781
\(372\) 0 0
\(373\) −30.8172 −1.59565 −0.797826 0.602888i \(-0.794017\pi\)
−0.797826 + 0.602888i \(0.794017\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −21.7209 −1.12017
\(377\) 37.7076 1.94204
\(378\) 0 0
\(379\) 19.8170 1.01793 0.508964 0.860788i \(-0.330029\pi\)
0.508964 + 0.860788i \(0.330029\pi\)
\(380\) −15.3541 −0.787648
\(381\) 0 0
\(382\) 46.1746 2.36250
\(383\) 23.6757 1.20977 0.604885 0.796313i \(-0.293219\pi\)
0.604885 + 0.796313i \(0.293219\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 42.5700 2.16675
\(387\) 0 0
\(388\) −1.50524 −0.0764168
\(389\) −8.51653 −0.431805 −0.215903 0.976415i \(-0.569269\pi\)
−0.215903 + 0.976415i \(0.569269\pi\)
\(390\) 0 0
\(391\) −9.11280 −0.460854
\(392\) 59.0095 2.98043
\(393\) 0 0
\(394\) −14.9293 −0.752127
\(395\) 6.08063 0.305949
\(396\) 0 0
\(397\) −3.78373 −0.189900 −0.0949499 0.995482i \(-0.530269\pi\)
−0.0949499 + 0.995482i \(0.530269\pi\)
\(398\) −24.8760 −1.24692
\(399\) 0 0
\(400\) −17.3766 −0.868832
\(401\) −17.5533 −0.876572 −0.438286 0.898835i \(-0.644414\pi\)
−0.438286 + 0.898835i \(0.644414\pi\)
\(402\) 0 0
\(403\) 6.10678 0.304201
\(404\) 52.6689 2.62037
\(405\) 0 0
\(406\) 110.829 5.50035
\(407\) 0 0
\(408\) 0 0
\(409\) −28.2905 −1.39888 −0.699438 0.714693i \(-0.746566\pi\)
−0.699438 + 0.714693i \(0.746566\pi\)
\(410\) 28.9970 1.43206
\(411\) 0 0
\(412\) −47.8445 −2.35713
\(413\) 27.9738 1.37650
\(414\) 0 0
\(415\) −3.32570 −0.163252
\(416\) −1.92040 −0.0941553
\(417\) 0 0
\(418\) 0 0
\(419\) 32.2357 1.57482 0.787409 0.616430i \(-0.211422\pi\)
0.787409 + 0.616430i \(0.211422\pi\)
\(420\) 0 0
\(421\) −28.4419 −1.38617 −0.693086 0.720855i \(-0.743750\pi\)
−0.693086 + 0.720855i \(0.743750\pi\)
\(422\) −36.2688 −1.76554
\(423\) 0 0
\(424\) 47.9013 2.32629
\(425\) −10.6189 −0.515093
\(426\) 0 0
\(427\) −20.7924 −1.00621
\(428\) −19.1632 −0.926286
\(429\) 0 0
\(430\) −5.17007 −0.249323
\(431\) −26.7921 −1.29053 −0.645265 0.763959i \(-0.723253\pi\)
−0.645265 + 0.763959i \(0.723253\pi\)
\(432\) 0 0
\(433\) −9.40242 −0.451852 −0.225926 0.974145i \(-0.572541\pi\)
−0.225926 + 0.974145i \(0.572541\pi\)
\(434\) 17.9489 0.861573
\(435\) 0 0
\(436\) −65.6070 −3.14200
\(437\) −13.2043 −0.631649
\(438\) 0 0
\(439\) 17.8962 0.854139 0.427069 0.904219i \(-0.359546\pi\)
0.427069 + 0.904219i \(0.359546\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −23.5117 −1.11834
\(443\) 18.3813 0.873320 0.436660 0.899627i \(-0.356161\pi\)
0.436660 + 0.899627i \(0.356161\pi\)
\(444\) 0 0
\(445\) −13.1250 −0.622186
\(446\) 1.51061 0.0715293
\(447\) 0 0
\(448\) 31.7183 1.49855
\(449\) −5.99650 −0.282992 −0.141496 0.989939i \(-0.545191\pi\)
−0.141496 + 0.989939i \(0.545191\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −3.44396 −0.161990
\(453\) 0 0
\(454\) 28.5653 1.34064
\(455\) −15.4780 −0.725622
\(456\) 0 0
\(457\) −25.5348 −1.19447 −0.597233 0.802068i \(-0.703733\pi\)
−0.597233 + 0.802068i \(0.703733\pi\)
\(458\) 2.00133 0.0935162
\(459\) 0 0
\(460\) 13.8412 0.645350
\(461\) −31.5683 −1.47028 −0.735142 0.677913i \(-0.762885\pi\)
−0.735142 + 0.677913i \(0.762885\pi\)
\(462\) 0 0
\(463\) 3.76414 0.174934 0.0874671 0.996167i \(-0.472123\pi\)
0.0874671 + 0.996167i \(0.472123\pi\)
\(464\) −45.0464 −2.09123
\(465\) 0 0
\(466\) −42.4441 −1.96618
\(467\) −5.85161 −0.270780 −0.135390 0.990792i \(-0.543229\pi\)
−0.135390 + 0.990792i \(0.543229\pi\)
\(468\) 0 0
\(469\) −3.69159 −0.170462
\(470\) 10.4708 0.482983
\(471\) 0 0
\(472\) −32.6948 −1.50490
\(473\) 0 0
\(474\) 0 0
\(475\) −15.3867 −0.705990
\(476\) −46.2725 −2.12090
\(477\) 0 0
\(478\) −0.491456 −0.0224787
\(479\) 25.6896 1.17379 0.586895 0.809663i \(-0.300350\pi\)
0.586895 + 0.809663i \(0.300350\pi\)
\(480\) 0 0
\(481\) −11.7082 −0.533848
\(482\) −36.4890 −1.66203
\(483\) 0 0
\(484\) 0 0
\(485\) 0.367573 0.0166906
\(486\) 0 0
\(487\) −5.31409 −0.240805 −0.120402 0.992725i \(-0.538418\pi\)
−0.120402 + 0.992725i \(0.538418\pi\)
\(488\) 24.3013 1.10007
\(489\) 0 0
\(490\) −28.4463 −1.28507
\(491\) −2.46464 −0.111228 −0.0556138 0.998452i \(-0.517712\pi\)
−0.0556138 + 0.998452i \(0.517712\pi\)
\(492\) 0 0
\(493\) −27.5280 −1.23980
\(494\) −34.0682 −1.53280
\(495\) 0 0
\(496\) −7.29531 −0.327569
\(497\) −16.3299 −0.732496
\(498\) 0 0
\(499\) 22.3025 0.998399 0.499199 0.866487i \(-0.333628\pi\)
0.499199 + 0.866487i \(0.333628\pi\)
\(500\) 36.1879 1.61837
\(501\) 0 0
\(502\) −20.9780 −0.936293
\(503\) −25.9733 −1.15809 −0.579047 0.815294i \(-0.696575\pi\)
−0.579047 + 0.815294i \(0.696575\pi\)
\(504\) 0 0
\(505\) −12.8615 −0.572331
\(506\) 0 0
\(507\) 0 0
\(508\) −47.2389 −2.09589
\(509\) −27.8741 −1.23550 −0.617749 0.786376i \(-0.711955\pi\)
−0.617749 + 0.786376i \(0.711955\pi\)
\(510\) 0 0
\(511\) 49.3089 2.18130
\(512\) −41.3739 −1.82849
\(513\) 0 0
\(514\) 31.9809 1.41062
\(515\) 11.6834 0.514834
\(516\) 0 0
\(517\) 0 0
\(518\) −34.4124 −1.51199
\(519\) 0 0
\(520\) 18.0902 0.793306
\(521\) 25.8693 1.13335 0.566676 0.823940i \(-0.308229\pi\)
0.566676 + 0.823940i \(0.308229\pi\)
\(522\) 0 0
\(523\) 27.2640 1.19217 0.596085 0.802921i \(-0.296722\pi\)
0.596085 + 0.802921i \(0.296722\pi\)
\(524\) −0.984130 −0.0429919
\(525\) 0 0
\(526\) −36.5430 −1.59335
\(527\) −4.45819 −0.194202
\(528\) 0 0
\(529\) −11.0967 −0.482466
\(530\) −23.0914 −1.00303
\(531\) 0 0
\(532\) −67.0484 −2.90692
\(533\) 43.0816 1.86607
\(534\) 0 0
\(535\) 4.67957 0.202316
\(536\) 4.31459 0.186362
\(537\) 0 0
\(538\) 9.37812 0.404320
\(539\) 0 0
\(540\) 0 0
\(541\) 23.3832 1.00532 0.502661 0.864484i \(-0.332354\pi\)
0.502661 + 0.864484i \(0.332354\pi\)
\(542\) 34.0448 1.46235
\(543\) 0 0
\(544\) 1.40197 0.0601088
\(545\) 16.0210 0.686263
\(546\) 0 0
\(547\) −15.2829 −0.653452 −0.326726 0.945119i \(-0.605945\pi\)
−0.326726 + 0.945119i \(0.605945\pi\)
\(548\) −1.84296 −0.0787273
\(549\) 0 0
\(550\) 0 0
\(551\) −39.8878 −1.69928
\(552\) 0 0
\(553\) 26.5529 1.12915
\(554\) −6.04755 −0.256936
\(555\) 0 0
\(556\) 72.3136 3.06678
\(557\) −7.24041 −0.306786 −0.153393 0.988165i \(-0.549020\pi\)
−0.153393 + 0.988165i \(0.549020\pi\)
\(558\) 0 0
\(559\) −7.68132 −0.324885
\(560\) 18.4904 0.781364
\(561\) 0 0
\(562\) 49.0113 2.06742
\(563\) 31.5401 1.32926 0.664628 0.747174i \(-0.268590\pi\)
0.664628 + 0.747174i \(0.268590\pi\)
\(564\) 0 0
\(565\) 0.841001 0.0353812
\(566\) −17.6861 −0.743404
\(567\) 0 0
\(568\) 19.0858 0.800822
\(569\) 11.1823 0.468785 0.234392 0.972142i \(-0.424690\pi\)
0.234392 + 0.972142i \(0.424690\pi\)
\(570\) 0 0
\(571\) −11.5906 −0.485052 −0.242526 0.970145i \(-0.577976\pi\)
−0.242526 + 0.970145i \(0.577976\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 126.624 5.28519
\(575\) 13.8706 0.578444
\(576\) 0 0
\(577\) 16.9358 0.705045 0.352522 0.935803i \(-0.385324\pi\)
0.352522 + 0.935803i \(0.385324\pi\)
\(578\) −24.6612 −1.02577
\(579\) 0 0
\(580\) 41.8116 1.73613
\(581\) −14.5227 −0.602503
\(582\) 0 0
\(583\) 0 0
\(584\) −57.6304 −2.38476
\(585\) 0 0
\(586\) −41.9776 −1.73408
\(587\) −9.04678 −0.373401 −0.186700 0.982417i \(-0.559779\pi\)
−0.186700 + 0.982417i \(0.559779\pi\)
\(588\) 0 0
\(589\) −6.45986 −0.266174
\(590\) 15.7609 0.648866
\(591\) 0 0
\(592\) 13.9869 0.574858
\(593\) −20.4127 −0.838248 −0.419124 0.907929i \(-0.637663\pi\)
−0.419124 + 0.907929i \(0.637663\pi\)
\(594\) 0 0
\(595\) 11.2996 0.463237
\(596\) 64.6019 2.64620
\(597\) 0 0
\(598\) 30.7114 1.25588
\(599\) −42.0219 −1.71697 −0.858485 0.512839i \(-0.828594\pi\)
−0.858485 + 0.512839i \(0.828594\pi\)
\(600\) 0 0
\(601\) 10.6951 0.436262 0.218131 0.975919i \(-0.430004\pi\)
0.218131 + 0.975919i \(0.430004\pi\)
\(602\) −22.5767 −0.920158
\(603\) 0 0
\(604\) −24.5364 −0.998373
\(605\) 0 0
\(606\) 0 0
\(607\) 45.5994 1.85082 0.925411 0.378965i \(-0.123720\pi\)
0.925411 + 0.378965i \(0.123720\pi\)
\(608\) 2.03143 0.0823855
\(609\) 0 0
\(610\) −11.7148 −0.474317
\(611\) 15.5568 0.629361
\(612\) 0 0
\(613\) −27.1676 −1.09729 −0.548644 0.836056i \(-0.684856\pi\)
−0.548644 + 0.836056i \(0.684856\pi\)
\(614\) −18.4240 −0.743531
\(615\) 0 0
\(616\) 0 0
\(617\) 7.83117 0.315271 0.157636 0.987497i \(-0.449613\pi\)
0.157636 + 0.987497i \(0.449613\pi\)
\(618\) 0 0
\(619\) 37.9269 1.52441 0.762206 0.647335i \(-0.224116\pi\)
0.762206 + 0.647335i \(0.224116\pi\)
\(620\) 6.77143 0.271947
\(621\) 0 0
\(622\) −25.8848 −1.03788
\(623\) −57.3145 −2.29626
\(624\) 0 0
\(625\) 11.2647 0.450588
\(626\) −25.6727 −1.02609
\(627\) 0 0
\(628\) 30.3257 1.21013
\(629\) 8.54744 0.340809
\(630\) 0 0
\(631\) −27.6177 −1.09944 −0.549722 0.835348i \(-0.685266\pi\)
−0.549722 + 0.835348i \(0.685266\pi\)
\(632\) −31.0341 −1.23447
\(633\) 0 0
\(634\) −31.4629 −1.24955
\(635\) 11.5356 0.457775
\(636\) 0 0
\(637\) −42.2634 −1.67454
\(638\) 0 0
\(639\) 0 0
\(640\) 18.9213 0.747931
\(641\) 4.47215 0.176639 0.0883197 0.996092i \(-0.471850\pi\)
0.0883197 + 0.996092i \(0.471850\pi\)
\(642\) 0 0
\(643\) −7.47160 −0.294651 −0.147326 0.989088i \(-0.547067\pi\)
−0.147326 + 0.989088i \(0.547067\pi\)
\(644\) 60.4419 2.38174
\(645\) 0 0
\(646\) 24.8711 0.978541
\(647\) 11.5159 0.452738 0.226369 0.974042i \(-0.427314\pi\)
0.226369 + 0.974042i \(0.427314\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 35.7872 1.40369
\(651\) 0 0
\(652\) 56.6504 2.21860
\(653\) −21.1384 −0.827209 −0.413605 0.910457i \(-0.635730\pi\)
−0.413605 + 0.910457i \(0.635730\pi\)
\(654\) 0 0
\(655\) 0.240321 0.00939011
\(656\) −51.4664 −2.00942
\(657\) 0 0
\(658\) 45.7241 1.78251
\(659\) 27.0354 1.05315 0.526575 0.850129i \(-0.323476\pi\)
0.526575 + 0.850129i \(0.323476\pi\)
\(660\) 0 0
\(661\) −26.7618 −1.04091 −0.520456 0.853888i \(-0.674238\pi\)
−0.520456 + 0.853888i \(0.674238\pi\)
\(662\) 40.3124 1.56678
\(663\) 0 0
\(664\) 16.9736 0.658703
\(665\) 16.3730 0.634916
\(666\) 0 0
\(667\) 35.9575 1.39228
\(668\) 25.9050 1.00230
\(669\) 0 0
\(670\) −2.07990 −0.0803536
\(671\) 0 0
\(672\) 0 0
\(673\) −49.1382 −1.89414 −0.947069 0.321030i \(-0.895971\pi\)
−0.947069 + 0.321030i \(0.895971\pi\)
\(674\) −71.5153 −2.75466
\(675\) 0 0
\(676\) 0.365479 0.0140569
\(677\) −45.6872 −1.75590 −0.877950 0.478752i \(-0.841089\pi\)
−0.877950 + 0.478752i \(0.841089\pi\)
\(678\) 0 0
\(679\) 1.60512 0.0615989
\(680\) −13.2065 −0.506447
\(681\) 0 0
\(682\) 0 0
\(683\) −47.1991 −1.80602 −0.903012 0.429615i \(-0.858649\pi\)
−0.903012 + 0.429615i \(0.858649\pi\)
\(684\) 0 0
\(685\) 0.450044 0.0171953
\(686\) −49.7813 −1.90066
\(687\) 0 0
\(688\) 9.17629 0.349843
\(689\) −34.3075 −1.30701
\(690\) 0 0
\(691\) 29.7835 1.13302 0.566509 0.824055i \(-0.308294\pi\)
0.566509 + 0.824055i \(0.308294\pi\)
\(692\) 31.8002 1.20886
\(693\) 0 0
\(694\) −53.1004 −2.01566
\(695\) −17.6587 −0.669833
\(696\) 0 0
\(697\) −31.4513 −1.19130
\(698\) −59.5408 −2.25365
\(699\) 0 0
\(700\) 70.4314 2.66206
\(701\) −0.592613 −0.0223827 −0.0111913 0.999937i \(-0.503562\pi\)
−0.0111913 + 0.999937i \(0.503562\pi\)
\(702\) 0 0
\(703\) 12.3851 0.467115
\(704\) 0 0
\(705\) 0 0
\(706\) 51.6178 1.94266
\(707\) −56.1639 −2.11226
\(708\) 0 0
\(709\) −33.8353 −1.27071 −0.635356 0.772219i \(-0.719147\pi\)
−0.635356 + 0.772219i \(0.719147\pi\)
\(710\) −9.20054 −0.345290
\(711\) 0 0
\(712\) 66.9870 2.51045
\(713\) 5.82335 0.218086
\(714\) 0 0
\(715\) 0 0
\(716\) 19.7593 0.738439
\(717\) 0 0
\(718\) 38.5865 1.44003
\(719\) 48.6923 1.81592 0.907958 0.419061i \(-0.137641\pi\)
0.907958 + 0.419061i \(0.137641\pi\)
\(720\) 0 0
\(721\) 51.0194 1.90006
\(722\) −10.7083 −0.398521
\(723\) 0 0
\(724\) 36.6682 1.36276
\(725\) 41.9004 1.55614
\(726\) 0 0
\(727\) −38.4706 −1.42680 −0.713399 0.700758i \(-0.752845\pi\)
−0.713399 + 0.700758i \(0.752845\pi\)
\(728\) 78.9963 2.92780
\(729\) 0 0
\(730\) 27.7814 1.02824
\(731\) 5.60766 0.207407
\(732\) 0 0
\(733\) −9.55224 −0.352820 −0.176410 0.984317i \(-0.556448\pi\)
−0.176410 + 0.984317i \(0.556448\pi\)
\(734\) −20.1613 −0.744166
\(735\) 0 0
\(736\) −1.83127 −0.0675015
\(737\) 0 0
\(738\) 0 0
\(739\) −19.0274 −0.699933 −0.349966 0.936762i \(-0.613807\pi\)
−0.349966 + 0.936762i \(0.613807\pi\)
\(740\) −12.9825 −0.477246
\(741\) 0 0
\(742\) −100.836 −3.70179
\(743\) −12.7149 −0.466466 −0.233233 0.972421i \(-0.574930\pi\)
−0.233233 + 0.972421i \(0.574930\pi\)
\(744\) 0 0
\(745\) −15.7755 −0.577971
\(746\) −75.8204 −2.77598
\(747\) 0 0
\(748\) 0 0
\(749\) 20.4348 0.746671
\(750\) 0 0
\(751\) −38.1521 −1.39219 −0.696094 0.717950i \(-0.745080\pi\)
−0.696094 + 0.717950i \(0.745080\pi\)
\(752\) −18.5845 −0.677708
\(753\) 0 0
\(754\) 92.7732 3.37860
\(755\) 5.99171 0.218060
\(756\) 0 0
\(757\) 6.51456 0.236776 0.118388 0.992967i \(-0.462227\pi\)
0.118388 + 0.992967i \(0.462227\pi\)
\(758\) 48.7563 1.77091
\(759\) 0 0
\(760\) −19.1361 −0.694140
\(761\) 44.9281 1.62864 0.814321 0.580415i \(-0.197110\pi\)
0.814321 + 0.580415i \(0.197110\pi\)
\(762\) 0 0
\(763\) 69.9605 2.53274
\(764\) 76.0695 2.75210
\(765\) 0 0
\(766\) 58.2500 2.10466
\(767\) 23.4164 0.845518
\(768\) 0 0
\(769\) 0.0822779 0.00296702 0.00148351 0.999999i \(-0.499528\pi\)
0.00148351 + 0.999999i \(0.499528\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 70.1311 2.52407
\(773\) 19.0169 0.683991 0.341996 0.939702i \(-0.388897\pi\)
0.341996 + 0.939702i \(0.388897\pi\)
\(774\) 0 0
\(775\) 6.78581 0.243753
\(776\) −1.87601 −0.0673447
\(777\) 0 0
\(778\) −20.9535 −0.751218
\(779\) −45.5725 −1.63281
\(780\) 0 0
\(781\) 0 0
\(782\) −22.4205 −0.801755
\(783\) 0 0
\(784\) 50.4889 1.80317
\(785\) −7.40542 −0.264311
\(786\) 0 0
\(787\) −8.62985 −0.307621 −0.153810 0.988100i \(-0.549155\pi\)
−0.153810 + 0.988100i \(0.549155\pi\)
\(788\) −24.5950 −0.876160
\(789\) 0 0
\(790\) 14.9603 0.532265
\(791\) 3.67249 0.130579
\(792\) 0 0
\(793\) −17.4049 −0.618068
\(794\) −9.30922 −0.330372
\(795\) 0 0
\(796\) −40.9815 −1.45255
\(797\) 16.5737 0.587072 0.293536 0.955948i \(-0.405168\pi\)
0.293536 + 0.955948i \(0.405168\pi\)
\(798\) 0 0
\(799\) −11.3571 −0.401784
\(800\) −2.13393 −0.0754459
\(801\) 0 0
\(802\) −43.1870 −1.52499
\(803\) 0 0
\(804\) 0 0
\(805\) −14.7597 −0.520210
\(806\) 15.0247 0.529223
\(807\) 0 0
\(808\) 65.6422 2.30929
\(809\) −22.6429 −0.796081 −0.398041 0.917368i \(-0.630310\pi\)
−0.398041 + 0.917368i \(0.630310\pi\)
\(810\) 0 0
\(811\) 56.5839 1.98693 0.993464 0.114147i \(-0.0364134\pi\)
0.993464 + 0.114147i \(0.0364134\pi\)
\(812\) 182.583 6.40742
\(813\) 0 0
\(814\) 0 0
\(815\) −13.8338 −0.484578
\(816\) 0 0
\(817\) 8.12544 0.284273
\(818\) −69.6040 −2.43365
\(819\) 0 0
\(820\) 47.7705 1.66822
\(821\) 47.3494 1.65250 0.826252 0.563300i \(-0.190468\pi\)
0.826252 + 0.563300i \(0.190468\pi\)
\(822\) 0 0
\(823\) −6.98088 −0.243338 −0.121669 0.992571i \(-0.538825\pi\)
−0.121669 + 0.992571i \(0.538825\pi\)
\(824\) −59.6296 −2.07729
\(825\) 0 0
\(826\) 68.8249 2.39472
\(827\) −39.8238 −1.38481 −0.692404 0.721510i \(-0.743449\pi\)
−0.692404 + 0.721510i \(0.743449\pi\)
\(828\) 0 0
\(829\) −33.0813 −1.14896 −0.574481 0.818518i \(-0.694796\pi\)
−0.574481 + 0.818518i \(0.694796\pi\)
\(830\) −8.18233 −0.284013
\(831\) 0 0
\(832\) 26.5508 0.920485
\(833\) 30.8539 1.06903
\(834\) 0 0
\(835\) −6.32591 −0.218917
\(836\) 0 0
\(837\) 0 0
\(838\) 79.3106 2.73974
\(839\) −34.1940 −1.18051 −0.590254 0.807217i \(-0.700973\pi\)
−0.590254 + 0.807217i \(0.700973\pi\)
\(840\) 0 0
\(841\) 79.6207 2.74554
\(842\) −69.9764 −2.41155
\(843\) 0 0
\(844\) −59.7504 −2.05669
\(845\) −0.0892486 −0.00307025
\(846\) 0 0
\(847\) 0 0
\(848\) 40.9846 1.40742
\(849\) 0 0
\(850\) −26.1260 −0.896116
\(851\) −11.1648 −0.382724
\(852\) 0 0
\(853\) 7.64122 0.261630 0.130815 0.991407i \(-0.458241\pi\)
0.130815 + 0.991407i \(0.458241\pi\)
\(854\) −51.1561 −1.75052
\(855\) 0 0
\(856\) −23.8834 −0.816319
\(857\) 27.6052 0.942976 0.471488 0.881873i \(-0.343717\pi\)
0.471488 + 0.881873i \(0.343717\pi\)
\(858\) 0 0
\(859\) −17.0244 −0.580864 −0.290432 0.956896i \(-0.593799\pi\)
−0.290432 + 0.956896i \(0.593799\pi\)
\(860\) −8.51734 −0.290439
\(861\) 0 0
\(862\) −65.9174 −2.24516
\(863\) −10.2621 −0.349326 −0.174663 0.984628i \(-0.555884\pi\)
−0.174663 + 0.984628i \(0.555884\pi\)
\(864\) 0 0
\(865\) −7.76548 −0.264034
\(866\) −23.1331 −0.786094
\(867\) 0 0
\(868\) 29.5695 1.00366
\(869\) 0 0
\(870\) 0 0
\(871\) −3.09017 −0.104706
\(872\) −81.7672 −2.76899
\(873\) 0 0
\(874\) −32.4871 −1.09889
\(875\) −38.5892 −1.30455
\(876\) 0 0
\(877\) 22.2626 0.751753 0.375877 0.926670i \(-0.377342\pi\)
0.375877 + 0.926670i \(0.377342\pi\)
\(878\) 44.0306 1.48596
\(879\) 0 0
\(880\) 0 0
\(881\) 3.58540 0.120795 0.0603976 0.998174i \(-0.480763\pi\)
0.0603976 + 0.998174i \(0.480763\pi\)
\(882\) 0 0
\(883\) 44.9895 1.51402 0.757008 0.653406i \(-0.226660\pi\)
0.757008 + 0.653406i \(0.226660\pi\)
\(884\) −38.7340 −1.30276
\(885\) 0 0
\(886\) 45.2240 1.51933
\(887\) 14.8037 0.497059 0.248530 0.968624i \(-0.420053\pi\)
0.248530 + 0.968624i \(0.420053\pi\)
\(888\) 0 0
\(889\) 50.3736 1.68948
\(890\) −32.2919 −1.08243
\(891\) 0 0
\(892\) 2.48862 0.0833253
\(893\) −16.4563 −0.550688
\(894\) 0 0
\(895\) −4.82514 −0.161287
\(896\) 82.6257 2.76033
\(897\) 0 0
\(898\) −14.7534 −0.492326
\(899\) 17.5912 0.586700
\(900\) 0 0
\(901\) 25.0458 0.834397
\(902\) 0 0
\(903\) 0 0
\(904\) −4.29227 −0.142759
\(905\) −8.95424 −0.297649
\(906\) 0 0
\(907\) 23.9740 0.796044 0.398022 0.917376i \(-0.369697\pi\)
0.398022 + 0.917376i \(0.369697\pi\)
\(908\) 47.0593 1.56172
\(909\) 0 0
\(910\) −38.0811 −1.26238
\(911\) 22.4487 0.743760 0.371880 0.928281i \(-0.378713\pi\)
0.371880 + 0.928281i \(0.378713\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −62.8240 −2.07803
\(915\) 0 0
\(916\) 3.29706 0.108938
\(917\) 1.04943 0.0346554
\(918\) 0 0
\(919\) −18.9294 −0.624424 −0.312212 0.950012i \(-0.601070\pi\)
−0.312212 + 0.950012i \(0.601070\pi\)
\(920\) 17.2506 0.568734
\(921\) 0 0
\(922\) −77.6686 −2.55788
\(923\) −13.6695 −0.449937
\(924\) 0 0
\(925\) −13.0101 −0.427768
\(926\) 9.26102 0.304336
\(927\) 0 0
\(928\) −5.53191 −0.181594
\(929\) −22.0833 −0.724530 −0.362265 0.932075i \(-0.617997\pi\)
−0.362265 + 0.932075i \(0.617997\pi\)
\(930\) 0 0
\(931\) 44.7070 1.46521
\(932\) −69.9237 −2.29043
\(933\) 0 0
\(934\) −14.3969 −0.471080
\(935\) 0 0
\(936\) 0 0
\(937\) −12.0955 −0.395143 −0.197572 0.980288i \(-0.563306\pi\)
−0.197572 + 0.980288i \(0.563306\pi\)
\(938\) −9.08253 −0.296555
\(939\) 0 0
\(940\) 17.2500 0.562632
\(941\) −20.6359 −0.672710 −0.336355 0.941735i \(-0.609194\pi\)
−0.336355 + 0.941735i \(0.609194\pi\)
\(942\) 0 0
\(943\) 41.0821 1.33782
\(944\) −27.9738 −0.910471
\(945\) 0 0
\(946\) 0 0
\(947\) 5.27445 0.171397 0.0856983 0.996321i \(-0.472688\pi\)
0.0856983 + 0.996321i \(0.472688\pi\)
\(948\) 0 0
\(949\) 41.2757 1.33986
\(950\) −37.8564 −1.22822
\(951\) 0 0
\(952\) −57.6703 −1.86911
\(953\) 53.4076 1.73004 0.865020 0.501737i \(-0.167306\pi\)
0.865020 + 0.501737i \(0.167306\pi\)
\(954\) 0 0
\(955\) −18.5759 −0.601101
\(956\) −0.809640 −0.0261856
\(957\) 0 0
\(958\) 63.2050 2.04206
\(959\) 1.96525 0.0634614
\(960\) 0 0
\(961\) −28.1511 −0.908099
\(962\) −28.8061 −0.928744
\(963\) 0 0
\(964\) −60.1131 −1.93611
\(965\) −17.1258 −0.551297
\(966\) 0 0
\(967\) −44.5529 −1.43273 −0.716363 0.697728i \(-0.754194\pi\)
−0.716363 + 0.697728i \(0.754194\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0.904351 0.0290370
\(971\) 39.6181 1.27140 0.635702 0.771934i \(-0.280711\pi\)
0.635702 + 0.771934i \(0.280711\pi\)
\(972\) 0 0
\(973\) −77.1122 −2.47210
\(974\) −13.0744 −0.418932
\(975\) 0 0
\(976\) 20.7924 0.665547
\(977\) 56.8503 1.81880 0.909402 0.415918i \(-0.136540\pi\)
0.909402 + 0.415918i \(0.136540\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −46.8633 −1.49699
\(981\) 0 0
\(982\) −6.06382 −0.193504
\(983\) −11.1761 −0.356462 −0.178231 0.983989i \(-0.557037\pi\)
−0.178231 + 0.983989i \(0.557037\pi\)
\(984\) 0 0
\(985\) 6.00600 0.191367
\(986\) −67.7280 −2.15690
\(987\) 0 0
\(988\) −56.1251 −1.78558
\(989\) −7.32482 −0.232916
\(990\) 0 0
\(991\) −37.0475 −1.17685 −0.588426 0.808551i \(-0.700252\pi\)
−0.588426 + 0.808551i \(0.700252\pi\)
\(992\) −0.895898 −0.0284448
\(993\) 0 0
\(994\) −40.1770 −1.27434
\(995\) 10.0075 0.317260
\(996\) 0 0
\(997\) −43.0930 −1.36477 −0.682385 0.730993i \(-0.739057\pi\)
−0.682385 + 0.730993i \(0.739057\pi\)
\(998\) 54.8716 1.73693
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.2.a.bi.1.8 8
3.2 odd 2 inner 3267.2.a.bi.1.1 8
11.7 odd 10 297.2.f.b.82.1 16
11.8 odd 10 297.2.f.b.163.1 yes 16
11.10 odd 2 3267.2.a.bj.1.1 8
33.8 even 10 297.2.f.b.163.4 yes 16
33.29 even 10 297.2.f.b.82.4 yes 16
33.32 even 2 3267.2.a.bj.1.8 8
99.7 odd 30 891.2.n.h.676.1 32
99.29 even 30 891.2.n.h.676.4 32
99.40 odd 30 891.2.n.h.379.4 32
99.41 even 30 891.2.n.h.460.4 32
99.52 odd 30 891.2.n.h.757.4 32
99.74 even 30 891.2.n.h.757.1 32
99.85 odd 30 891.2.n.h.460.1 32
99.95 even 30 891.2.n.h.379.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.b.82.1 16 11.7 odd 10
297.2.f.b.82.4 yes 16 33.29 even 10
297.2.f.b.163.1 yes 16 11.8 odd 10
297.2.f.b.163.4 yes 16 33.8 even 10
891.2.n.h.379.1 32 99.95 even 30
891.2.n.h.379.4 32 99.40 odd 30
891.2.n.h.460.1 32 99.85 odd 30
891.2.n.h.460.4 32 99.41 even 30
891.2.n.h.676.1 32 99.7 odd 30
891.2.n.h.676.4 32 99.29 even 30
891.2.n.h.757.1 32 99.74 even 30
891.2.n.h.757.4 32 99.52 odd 30
3267.2.a.bi.1.1 8 3.2 odd 2 inner
3267.2.a.bi.1.8 8 1.1 even 1 trivial
3267.2.a.bj.1.1 8 11.10 odd 2
3267.2.a.bj.1.8 8 33.32 even 2