Properties

Label 891.2.n.h.379.1
Level $891$
Weight $2$
Character 891.379
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 379.1
Character \(\chi\) \(=\) 891.379
Dual form 891.2.n.h.757.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.40657 - 0.511531i) q^{2} +(3.70281 + 1.64860i) q^{4} +(-0.968153 + 0.205787i) q^{5} +(-0.451792 - 4.29851i) q^{7} +(-4.08684 - 2.96926i) q^{8} +2.43519 q^{10} +(-0.155819 - 3.31296i) q^{11} +(2.42094 - 2.68872i) q^{13} +(-1.11156 + 10.5758i) q^{14} +(2.89211 + 3.21201i) q^{16} +(0.816208 - 2.51203i) q^{17} +(3.09629 + 2.24958i) q^{19} +(-3.92414 - 0.834103i) q^{20} +(-1.31970 + 8.05257i) q^{22} +(-1.72506 - 2.98789i) q^{23} +(-3.67275 + 1.63522i) q^{25} +(-7.20151 + 5.23221i) q^{26} +(5.41361 - 16.6614i) q^{28} +(1.08941 + 10.3650i) q^{29} +(-1.12941 + 1.25433i) q^{31} +(-0.265393 - 0.459674i) q^{32} +(-3.24924 + 5.62785i) q^{34} +(1.32198 + 4.06865i) q^{35} +(-2.61803 + 1.90211i) q^{37} +(-6.30069 - 6.99762i) q^{38} +(4.56773 + 2.03368i) q^{40} +(1.24467 - 11.8422i) q^{41} +(1.06153 - 1.83863i) q^{43} +(4.88477 - 12.5241i) q^{44} +(2.62307 + 8.07297i) q^{46} +(3.92806 - 1.74888i) q^{47} +(-11.4261 + 2.42868i) q^{49} +(9.67519 - 2.05653i) q^{50} +(13.3969 - 5.96467i) q^{52} +(-2.93021 - 9.01826i) q^{53} +(0.832623 + 3.17539i) q^{55} +(-10.9170 + 18.9088i) q^{56} +(2.68031 - 25.5014i) q^{58} +(5.91260 + 2.63246i) q^{59} +(-3.21892 - 3.57498i) q^{61} +(3.35963 - 2.44091i) q^{62} +(-2.26771 - 6.97930i) q^{64} +(-1.79053 + 3.10129i) q^{65} +(-0.427051 - 0.739674i) q^{67} +(7.16358 - 7.95596i) q^{68} +(-1.10020 - 10.4677i) q^{70} +(-1.16751 + 3.59324i) q^{71} +(-9.22952 + 6.70564i) q^{73} +(7.27346 - 3.23835i) q^{74} +(7.75630 + 13.4343i) q^{76} +(-14.1704 + 2.16656i) q^{77} +(-6.00915 - 1.27728i) q^{79} +(-3.46100 - 2.51456i) q^{80} +(-9.05306 + 27.8625i) q^{82} +(2.24830 + 2.49699i) q^{83} +(-0.273271 + 2.60000i) q^{85} +(-3.49517 + 3.88177i) q^{86} +(-9.20025 + 14.0022i) q^{88} -13.2605 q^{89} +(-12.6513 - 9.19169i) q^{91} +(-1.46174 - 13.9075i) q^{92} +(-10.3477 + 2.19948i) q^{94} +(-3.46062 - 1.54077i) q^{95} +(0.363252 + 0.0772116i) q^{97} +28.7399 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{4} + 24 q^{10} + 10 q^{16} - 4 q^{19} + 36 q^{22} - 32 q^{25} + 84 q^{28} + 26 q^{31} + 48 q^{34} - 48 q^{37} + 20 q^{40} - 24 q^{43} - 32 q^{46} - 24 q^{49} + 40 q^{52} - 32 q^{55} - 106 q^{58}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.40657 0.511531i −1.70170 0.361707i −0.748286 0.663376i \(-0.769123\pi\)
−0.953413 + 0.301668i \(0.902456\pi\)
\(3\) 0 0
\(4\) 3.70281 + 1.64860i 1.85140 + 0.824298i
\(5\) −0.968153 + 0.205787i −0.432971 + 0.0920309i −0.419241 0.907875i \(-0.637704\pi\)
−0.0137300 + 0.999906i \(0.504371\pi\)
\(6\) 0 0
\(7\) −0.451792 4.29851i −0.170761 1.62468i −0.659117 0.752040i \(-0.729070\pi\)
0.488356 0.872645i \(-0.337597\pi\)
\(8\) −4.08684 2.96926i −1.44492 1.04979i
\(9\) 0 0
\(10\) 2.43519 0.770075
\(11\) −0.155819 3.31296i −0.0469813 0.998896i
\(12\) 0 0
\(13\) 2.42094 2.68872i 0.671447 0.745718i −0.307114 0.951673i \(-0.599363\pi\)
0.978561 + 0.205955i \(0.0660301\pi\)
\(14\) −1.11156 + 10.5758i −0.297076 + 2.82649i
\(15\) 0 0
\(16\) 2.89211 + 3.21201i 0.723027 + 0.803003i
\(17\) 0.816208 2.51203i 0.197959 0.609257i −0.801970 0.597365i \(-0.796215\pi\)
0.999929 0.0118921i \(-0.00378545\pi\)
\(18\) 0 0
\(19\) 3.09629 + 2.24958i 0.710337 + 0.516090i 0.883282 0.468841i \(-0.155328\pi\)
−0.172945 + 0.984931i \(0.555328\pi\)
\(20\) −3.92414 0.834103i −0.877465 0.186511i
\(21\) 0 0
\(22\) −1.31970 + 8.05257i −0.281360 + 1.71681i
\(23\) −1.72506 2.98789i −0.359699 0.623017i 0.628211 0.778043i \(-0.283787\pi\)
−0.987910 + 0.155026i \(0.950454\pi\)
\(24\) 0 0
\(25\) −3.67275 + 1.63522i −0.734551 + 0.327043i
\(26\) −7.20151 + 5.23221i −1.41233 + 1.02612i
\(27\) 0 0
\(28\) 5.41361 16.6614i 1.02308 3.14870i
\(29\) 1.08941 + 10.3650i 0.202298 + 1.92474i 0.351986 + 0.936005i \(0.385506\pi\)
−0.149688 + 0.988733i \(0.547827\pi\)
\(30\) 0 0
\(31\) −1.12941 + 1.25433i −0.202848 + 0.225285i −0.835982 0.548757i \(-0.815101\pi\)
0.633134 + 0.774042i \(0.281768\pi\)
\(32\) −0.265393 0.459674i −0.0469152 0.0812596i
\(33\) 0 0
\(34\) −3.24924 + 5.62785i −0.557240 + 0.965168i
\(35\) 1.32198 + 4.06865i 0.223456 + 0.687727i
\(36\) 0 0
\(37\) −2.61803 + 1.90211i −0.430402 + 0.312705i −0.781810 0.623517i \(-0.785703\pi\)
0.351408 + 0.936223i \(0.385703\pi\)
\(38\) −6.30069 6.99762i −1.02211 1.13516i
\(39\) 0 0
\(40\) 4.56773 + 2.03368i 0.722221 + 0.321554i
\(41\) 1.24467 11.8422i 0.194385 1.84945i −0.268813 0.963192i \(-0.586631\pi\)
0.463197 0.886255i \(-0.346702\pi\)
\(42\) 0 0
\(43\) 1.06153 1.83863i 0.161882 0.280388i −0.773661 0.633599i \(-0.781577\pi\)
0.935544 + 0.353211i \(0.114910\pi\)
\(44\) 4.88477 12.5241i 0.736406 1.88809i
\(45\) 0 0
\(46\) 2.62307 + 8.07297i 0.386750 + 1.19029i
\(47\) 3.92806 1.74888i 0.572966 0.255101i −0.0997364 0.995014i \(-0.531800\pi\)
0.672703 + 0.739913i \(0.265133\pi\)
\(48\) 0 0
\(49\) −11.4261 + 2.42868i −1.63229 + 0.346955i
\(50\) 9.67519 2.05653i 1.36828 0.290837i
\(51\) 0 0
\(52\) 13.3969 5.96467i 1.85781 0.827152i
\(53\) −2.93021 9.01826i −0.402496 1.23875i −0.922968 0.384876i \(-0.874244\pi\)
0.520473 0.853878i \(-0.325756\pi\)
\(54\) 0 0
\(55\) 0.832623 + 3.17539i 0.112271 + 0.428170i
\(56\) −10.9170 + 18.9088i −1.45885 + 2.52680i
\(57\) 0 0
\(58\) 2.68031 25.5014i 0.351941 3.34850i
\(59\) 5.91260 + 2.63246i 0.769755 + 0.342717i 0.753755 0.657155i \(-0.228240\pi\)
0.0159992 + 0.999872i \(0.494907\pi\)
\(60\) 0 0
\(61\) −3.21892 3.57498i −0.412141 0.457729i 0.500955 0.865473i \(-0.332982\pi\)
−0.913096 + 0.407744i \(0.866316\pi\)
\(62\) 3.35963 2.44091i 0.426673 0.309996i
\(63\) 0 0
\(64\) −2.26771 6.97930i −0.283464 0.872413i
\(65\) −1.79053 + 3.10129i −0.222088 + 0.384668i
\(66\) 0 0
\(67\) −0.427051 0.739674i −0.0521726 0.0903656i 0.838760 0.544502i \(-0.183281\pi\)
−0.890932 + 0.454136i \(0.849948\pi\)
\(68\) 7.16358 7.95596i 0.868712 0.964802i
\(69\) 0 0
\(70\) −1.10020 10.4677i −0.131499 1.25113i
\(71\) −1.16751 + 3.59324i −0.138558 + 0.426439i −0.996127 0.0879314i \(-0.971974\pi\)
0.857568 + 0.514371i \(0.171974\pi\)
\(72\) 0 0
\(73\) −9.22952 + 6.70564i −1.08023 + 0.784835i −0.977724 0.209897i \(-0.932687\pi\)
−0.102510 + 0.994732i \(0.532687\pi\)
\(74\) 7.27346 3.23835i 0.845523 0.376451i
\(75\) 0 0
\(76\) 7.75630 + 13.4343i 0.889708 + 1.54102i
\(77\) −14.1704 + 2.16656i −1.61487 + 0.246902i
\(78\) 0 0
\(79\) −6.00915 1.27728i −0.676082 0.143706i −0.142940 0.989731i \(-0.545656\pi\)
−0.533142 + 0.846026i \(0.678989\pi\)
\(80\) −3.46100 2.51456i −0.386951 0.281137i
\(81\) 0 0
\(82\) −9.05306 + 27.8625i −0.999743 + 3.07689i
\(83\) 2.24830 + 2.49699i 0.246783 + 0.274080i 0.853792 0.520615i \(-0.174297\pi\)
−0.607008 + 0.794695i \(0.707631\pi\)
\(84\) 0 0
\(85\) −0.273271 + 2.60000i −0.0296403 + 0.282009i
\(86\) −3.49517 + 3.88177i −0.376893 + 0.418583i
\(87\) 0 0
\(88\) −9.20025 + 14.0022i −0.980750 + 1.49264i
\(89\) −13.2605 −1.40561 −0.702806 0.711381i \(-0.748070\pi\)
−0.702806 + 0.711381i \(0.748070\pi\)
\(90\) 0 0
\(91\) −12.6513 9.19169i −1.32621 0.963550i
\(92\) −1.46174 13.9075i −0.152396 1.44996i
\(93\) 0 0
\(94\) −10.3477 + 2.19948i −1.06729 + 0.226859i
\(95\) −3.46062 1.54077i −0.355052 0.158079i
\(96\) 0 0
\(97\) 0.363252 + 0.0772116i 0.0368827 + 0.00783965i 0.226316 0.974054i \(-0.427332\pi\)
−0.189433 + 0.981894i \(0.560665\pi\)
\(98\) 28.7399 2.90317
\(99\) 0 0
\(100\) −16.2953 −1.62953
\(101\) −12.7103 2.70167i −1.26473 0.268826i −0.473743 0.880663i \(-0.657097\pi\)
−0.790984 + 0.611837i \(0.790431\pi\)
\(102\) 0 0
\(103\) −10.7835 4.80114i −1.06253 0.473071i −0.200381 0.979718i \(-0.564218\pi\)
−0.862153 + 0.506647i \(0.830885\pi\)
\(104\) −17.8775 + 3.79998i −1.75304 + 0.372619i
\(105\) 0 0
\(106\) 2.43862 + 23.2019i 0.236860 + 2.25357i
\(107\) 3.82493 + 2.77898i 0.369770 + 0.268654i 0.757116 0.653281i \(-0.226608\pi\)
−0.387345 + 0.921935i \(0.626608\pi\)
\(108\) 0 0
\(109\) 16.1864 1.55037 0.775186 0.631733i \(-0.217656\pi\)
0.775186 + 0.631733i \(0.217656\pi\)
\(110\) −0.379450 8.06770i −0.0361791 0.769225i
\(111\) 0 0
\(112\) 12.5002 13.8829i 1.18116 1.31181i
\(113\) −0.0888161 + 0.845028i −0.00835511 + 0.0794936i −0.997905 0.0646982i \(-0.979392\pi\)
0.989550 + 0.144192i \(0.0460582\pi\)
\(114\) 0 0
\(115\) 2.28499 + 2.53774i 0.213076 + 0.236645i
\(116\) −13.0539 + 40.1757i −1.21202 + 3.73022i
\(117\) 0 0
\(118\) −12.8825 9.35966i −1.18593 0.861627i
\(119\) −11.1667 2.37357i −1.02365 0.217584i
\(120\) 0 0
\(121\) −10.9514 + 1.03245i −0.995586 + 0.0938588i
\(122\) 5.91784 + 10.2500i 0.535776 + 0.927992i
\(123\) 0 0
\(124\) −6.24987 + 2.78262i −0.561255 + 0.249887i
\(125\) 7.22304 5.24784i 0.646048 0.469381i
\(126\) 0 0
\(127\) 3.60148 11.0842i 0.319580 0.983566i −0.654248 0.756280i \(-0.727015\pi\)
0.973828 0.227286i \(-0.0729853\pi\)
\(128\) 1.99823 + 19.0119i 0.176620 + 1.68043i
\(129\) 0 0
\(130\) 5.89545 6.54756i 0.517065 0.574259i
\(131\) 0.121401 + 0.210272i 0.0106068 + 0.0183716i 0.871280 0.490786i \(-0.163290\pi\)
−0.860673 + 0.509158i \(0.829957\pi\)
\(132\) 0 0
\(133\) 8.27099 14.3258i 0.717186 1.24220i
\(134\) 0.649360 + 1.99852i 0.0560962 + 0.172646i
\(135\) 0 0
\(136\) −10.7946 + 7.84273i −0.925629 + 0.672509i
\(137\) 0.304247 + 0.337900i 0.0259935 + 0.0288688i 0.756001 0.654570i \(-0.227150\pi\)
−0.730008 + 0.683439i \(0.760484\pi\)
\(138\) 0 0
\(139\) −16.2986 7.25659i −1.38243 0.615496i −0.425270 0.905067i \(-0.639821\pi\)
−0.957157 + 0.289571i \(0.906487\pi\)
\(140\) −1.81250 + 17.2448i −0.153185 + 1.45745i
\(141\) 0 0
\(142\) 4.64776 8.05015i 0.390031 0.675554i
\(143\) −9.28487 7.60152i −0.776440 0.635671i
\(144\) 0 0
\(145\) −3.18771 9.81076i −0.264725 0.814739i
\(146\) 25.6416 11.4164i 2.12211 0.944826i
\(147\) 0 0
\(148\) −12.8299 + 2.72708i −1.05461 + 0.224164i
\(149\) −15.5901 + 3.31378i −1.27719 + 0.271475i −0.796084 0.605187i \(-0.793099\pi\)
−0.481107 + 0.876662i \(0.659765\pi\)
\(150\) 0 0
\(151\) 5.53020 2.46220i 0.450041 0.200371i −0.169184 0.985584i \(-0.554113\pi\)
0.619226 + 0.785213i \(0.287447\pi\)
\(152\) −5.97443 18.3874i −0.484590 1.49141i
\(153\) 0 0
\(154\) 35.2103 + 2.03464i 2.83733 + 0.163956i
\(155\) 0.835314 1.44681i 0.0670940 0.116210i
\(156\) 0 0
\(157\) −0.782068 + 7.44088i −0.0624158 + 0.593847i 0.917955 + 0.396685i \(0.129839\pi\)
−0.980371 + 0.197162i \(0.936827\pi\)
\(158\) 13.8080 + 6.14774i 1.09851 + 0.489088i
\(159\) 0 0
\(160\) 0.351536 + 0.390420i 0.0277913 + 0.0308654i
\(161\) −12.0641 + 8.76508i −0.950784 + 0.690785i
\(162\) 0 0
\(163\) 4.31902 + 13.2926i 0.338292 + 1.04115i 0.965078 + 0.261963i \(0.0843699\pi\)
−0.626786 + 0.779191i \(0.715630\pi\)
\(164\) 24.1318 41.7976i 1.88438 3.26384i
\(165\) 0 0
\(166\) −4.13340 7.15925i −0.320814 0.555666i
\(167\) 4.27655 4.74959i 0.330930 0.367535i −0.554600 0.832117i \(-0.687129\pi\)
0.885530 + 0.464582i \(0.153796\pi\)
\(168\) 0 0
\(169\) −0.00942533 0.0896760i −0.000725025 0.00689815i
\(170\) 1.98762 6.11727i 0.152444 0.469174i
\(171\) 0 0
\(172\) 6.96181 5.05805i 0.530833 0.385673i
\(173\) 7.16735 3.19111i 0.544924 0.242616i −0.115764 0.993277i \(-0.536932\pi\)
0.660687 + 0.750661i \(0.270265\pi\)
\(174\) 0 0
\(175\) 8.68832 + 15.0486i 0.656775 + 1.13757i
\(176\) 10.1906 10.0819i 0.768148 0.759955i
\(177\) 0 0
\(178\) 31.9123 + 6.78317i 2.39193 + 0.508420i
\(179\) 3.94392 + 2.86542i 0.294782 + 0.214172i 0.725339 0.688392i \(-0.241683\pi\)
−0.430557 + 0.902563i \(0.641683\pi\)
\(180\) 0 0
\(181\) 2.79558 8.60390i 0.207794 0.639523i −0.791794 0.610789i \(-0.790852\pi\)
0.999587 0.0287340i \(-0.00914758\pi\)
\(182\) 25.7443 + 28.5919i 1.90829 + 2.11937i
\(183\) 0 0
\(184\) −1.82179 + 17.3332i −0.134304 + 1.27782i
\(185\) 2.14323 2.38030i 0.157573 0.175003i
\(186\) 0 0
\(187\) −8.44944 2.31264i −0.617884 0.169117i
\(188\) 17.4280 1.27107
\(189\) 0 0
\(190\) 7.54005 + 5.47817i 0.547013 + 0.397428i
\(191\) 1.96175 + 18.6648i 0.141947 + 1.35054i 0.801100 + 0.598530i \(0.204248\pi\)
−0.659153 + 0.752009i \(0.729085\pi\)
\(192\) 0 0
\(193\) 16.9244 3.59740i 1.21825 0.258947i 0.446446 0.894810i \(-0.352689\pi\)
0.771801 + 0.635864i \(0.219356\pi\)
\(194\) −0.834694 0.371630i −0.0599276 0.0266815i
\(195\) 0 0
\(196\) −46.3124 9.84400i −3.30803 0.703143i
\(197\) −6.06800 −0.432327 −0.216164 0.976357i \(-0.569354\pi\)
−0.216164 + 0.976357i \(0.569354\pi\)
\(198\) 0 0
\(199\) −10.1108 −0.716738 −0.358369 0.933580i \(-0.616667\pi\)
−0.358369 + 0.933580i \(0.616667\pi\)
\(200\) 19.8654 + 4.22251i 1.40469 + 0.298577i
\(201\) 0 0
\(202\) 29.2063 + 13.0035i 2.05495 + 0.914922i
\(203\) 44.0620 9.36568i 3.09255 0.657342i
\(204\) 0 0
\(205\) 1.23195 + 11.7212i 0.0860433 + 0.818647i
\(206\) 23.4954 + 17.0704i 1.63700 + 1.18935i
\(207\) 0 0
\(208\) 15.6378 1.08429
\(209\) 6.97033 10.6084i 0.482148 0.733799i
\(210\) 0 0
\(211\) 9.86394 10.9550i 0.679062 0.754175i −0.300836 0.953676i \(-0.597266\pi\)
0.979898 + 0.199501i \(0.0639323\pi\)
\(212\) 4.01746 38.2236i 0.275921 2.62521i
\(213\) 0 0
\(214\) −7.78342 8.64437i −0.532064 0.590917i
\(215\) −0.649360 + 1.99852i −0.0442860 + 0.136298i
\(216\) 0 0
\(217\) 5.90203 + 4.28807i 0.400656 + 0.291093i
\(218\) −38.9535 8.27983i −2.63827 0.560781i
\(219\) 0 0
\(220\) −2.15189 + 13.1305i −0.145081 + 0.885259i
\(221\) −4.77816 8.27602i −0.321414 0.556706i
\(222\) 0 0
\(223\) 0.560904 0.249730i 0.0375609 0.0167232i −0.387870 0.921714i \(-0.626789\pi\)
0.425431 + 0.904991i \(0.360122\pi\)
\(224\) −1.85601 + 1.34847i −0.124010 + 0.0900985i
\(225\) 0 0
\(226\) 0.646000 1.98818i 0.0429713 0.132252i
\(227\) −1.21361 11.5467i −0.0805502 0.766384i −0.958010 0.286734i \(-0.907430\pi\)
0.877460 0.479650i \(-0.159236\pi\)
\(228\) 0 0
\(229\) 0.544298 0.604504i 0.0359682 0.0399468i −0.724892 0.688862i \(-0.758110\pi\)
0.760860 + 0.648915i \(0.224777\pi\)
\(230\) −4.20084 7.27608i −0.276995 0.479770i
\(231\) 0 0
\(232\) 26.3243 45.5950i 1.72827 2.99346i
\(233\) −5.33097 16.4070i −0.349243 1.07486i −0.959273 0.282482i \(-0.908842\pi\)
0.610029 0.792379i \(-0.291158\pi\)
\(234\) 0 0
\(235\) −3.44307 + 2.50153i −0.224601 + 0.163182i
\(236\) 17.5533 + 19.4950i 1.14263 + 1.26901i
\(237\) 0 0
\(238\) 25.6594 + 11.4243i 1.66325 + 0.740526i
\(239\) 0.0208798 0.198658i 0.00135060 0.0128501i −0.993826 0.110951i \(-0.964610\pi\)
0.995176 + 0.0981012i \(0.0312769\pi\)
\(240\) 0 0
\(241\) −7.41547 + 12.8440i −0.477672 + 0.827353i −0.999672 0.0255926i \(-0.991853\pi\)
0.522000 + 0.852945i \(0.325186\pi\)
\(242\) 26.8835 + 3.11736i 1.72814 + 0.200391i
\(243\) 0 0
\(244\) −6.02536 18.5442i −0.385734 1.18717i
\(245\) 10.5624 4.70268i 0.674806 0.300443i
\(246\) 0 0
\(247\) 13.5444 2.87896i 0.861811 0.183184i
\(248\) 8.34016 1.77276i 0.529601 0.112570i
\(249\) 0 0
\(250\) −20.0672 + 8.93447i −1.26916 + 0.565066i
\(251\) 2.63483 + 8.10917i 0.166309 + 0.511846i 0.999130 0.0416955i \(-0.0132759\pi\)
−0.832821 + 0.553542i \(0.813276\pi\)
\(252\) 0 0
\(253\) −9.62996 + 6.18062i −0.605430 + 0.388572i
\(254\) −14.3371 + 24.8327i −0.899592 + 1.55814i
\(255\) 0 0
\(256\) 3.38215 32.1790i 0.211385 2.01119i
\(257\) −11.8748 5.28701i −0.740731 0.329795i 0.00144558 0.999999i \(-0.499540\pi\)
−0.742177 + 0.670204i \(0.766207\pi\)
\(258\) 0 0
\(259\) 9.35906 + 10.3943i 0.581544 + 0.645870i
\(260\) −11.7428 + 8.53163i −0.728256 + 0.529109i
\(261\) 0 0
\(262\) −0.184598 0.568135i −0.0114045 0.0350995i
\(263\) 7.42644 12.8630i 0.457934 0.793165i −0.540918 0.841075i \(-0.681923\pi\)
0.998852 + 0.0479108i \(0.0152563\pi\)
\(264\) 0 0
\(265\) 4.69274 + 8.12806i 0.288273 + 0.499303i
\(266\) −27.2328 + 30.2450i −1.66975 + 1.85444i
\(267\) 0 0
\(268\) −0.361864 3.44290i −0.0221043 0.210309i
\(269\) −1.17789 + 3.62517i −0.0718172 + 0.221031i −0.980522 0.196408i \(-0.937072\pi\)
0.908705 + 0.417439i \(0.137072\pi\)
\(270\) 0 0
\(271\) 11.1948 8.13347i 0.680033 0.494073i −0.193335 0.981133i \(-0.561931\pi\)
0.873369 + 0.487060i \(0.161931\pi\)
\(272\) 10.4292 4.64339i 0.632365 0.281547i
\(273\) 0 0
\(274\) −0.559343 0.968811i −0.0337912 0.0585280i
\(275\) 5.98969 + 11.9129i 0.361192 + 0.718375i
\(276\) 0 0
\(277\) −2.40431 0.511052i −0.144461 0.0307061i 0.135114 0.990830i \(-0.456860\pi\)
−0.279575 + 0.960124i \(0.590193\pi\)
\(278\) 35.5116 + 25.8007i 2.12984 + 1.54742i
\(279\) 0 0
\(280\) 6.67815 20.5532i 0.399096 1.22829i
\(281\) 13.3295 + 14.8039i 0.795171 + 0.883126i 0.995319 0.0966391i \(-0.0308093\pi\)
−0.200149 + 0.979765i \(0.564143\pi\)
\(282\) 0 0
\(283\) −0.751406 + 7.14915i −0.0446664 + 0.424973i 0.949224 + 0.314601i \(0.101871\pi\)
−0.993890 + 0.110372i \(0.964796\pi\)
\(284\) −10.2469 + 11.3803i −0.608040 + 0.675297i
\(285\) 0 0
\(286\) 18.4562 + 23.0431i 1.09134 + 1.36256i
\(287\) −51.4664 −3.03796
\(288\) 0 0
\(289\) 8.10919 + 5.89167i 0.477011 + 0.346569i
\(290\) 2.65292 + 25.2408i 0.155785 + 1.48219i
\(291\) 0 0
\(292\) −45.2300 + 9.61393i −2.64689 + 0.562613i
\(293\) −15.5867 6.93966i −0.910586 0.405419i −0.102669 0.994716i \(-0.532738\pi\)
−0.807917 + 0.589297i \(0.799405\pi\)
\(294\) 0 0
\(295\) −6.26603 1.33189i −0.364822 0.0775454i
\(296\) 16.3474 0.950172
\(297\) 0 0
\(298\) 39.2137 2.27159
\(299\) −12.2099 2.59528i −0.706114 0.150089i
\(300\) 0 0
\(301\) −8.38296 3.73233i −0.483186 0.215128i
\(302\) −14.5683 + 3.09658i −0.838311 + 0.178188i
\(303\) 0 0
\(304\) 1.72911 + 16.4514i 0.0991711 + 0.943550i
\(305\) 3.85210 + 2.79871i 0.220571 + 0.160254i
\(306\) 0 0
\(307\) 7.48842 0.427387 0.213693 0.976901i \(-0.431451\pi\)
0.213693 + 0.976901i \(0.431451\pi\)
\(308\) −56.0421 15.3389i −3.19329 0.874016i
\(309\) 0 0
\(310\) −2.75032 + 3.05455i −0.156208 + 0.173487i
\(311\) −1.09973 + 10.4632i −0.0623599 + 0.593314i 0.918066 + 0.396427i \(0.129750\pi\)
−0.980426 + 0.196887i \(0.936917\pi\)
\(312\) 0 0
\(313\) −6.98215 7.75446i −0.394654 0.438308i 0.512768 0.858527i \(-0.328620\pi\)
−0.907423 + 0.420219i \(0.861953\pi\)
\(314\) 5.68834 17.5069i 0.321012 0.987973i
\(315\) 0 0
\(316\) −20.1450 14.6362i −1.13324 0.823350i
\(317\) −12.5086 2.65879i −0.702554 0.149332i −0.157235 0.987561i \(-0.550258\pi\)
−0.545319 + 0.838229i \(0.683591\pi\)
\(318\) 0 0
\(319\) 34.1692 5.22424i 1.91311 0.292501i
\(320\) 3.63175 + 6.29037i 0.203021 + 0.351642i
\(321\) 0 0
\(322\) 33.5167 14.9226i 1.86781 0.831603i
\(323\) 8.17824 5.94184i 0.455049 0.330613i
\(324\) 0 0
\(325\) −4.49487 + 13.8338i −0.249330 + 0.767360i
\(326\) −3.59443 34.1988i −0.199077 1.89409i
\(327\) 0 0
\(328\) −40.2495 + 44.7016i −2.22241 + 2.46823i
\(329\) −9.29227 16.0947i −0.512299 0.887328i
\(330\) 0 0
\(331\) −8.19247 + 14.1898i −0.450299 + 0.779941i −0.998404 0.0564686i \(-0.982016\pi\)
0.548105 + 0.836409i \(0.315349\pi\)
\(332\) 4.20849 + 12.9524i 0.230971 + 0.710856i
\(333\) 0 0
\(334\) −12.7214 + 9.24262i −0.696083 + 0.505734i
\(335\) 0.565666 + 0.628236i 0.0309057 + 0.0343242i
\(336\) 0 0
\(337\) 26.5543 + 11.8228i 1.44651 + 0.644026i 0.971733 0.236082i \(-0.0758633\pi\)
0.474774 + 0.880108i \(0.342530\pi\)
\(338\) −0.0231894 + 0.220633i −0.00126134 + 0.0120008i
\(339\) 0 0
\(340\) −5.29821 + 9.17677i −0.287336 + 0.497680i
\(341\) 4.33155 + 3.54624i 0.234566 + 0.192039i
\(342\) 0 0
\(343\) 6.25252 + 19.2433i 0.337604 + 1.03904i
\(344\) −9.79769 + 4.36221i −0.528256 + 0.235195i
\(345\) 0 0
\(346\) −18.8811 + 4.01329i −1.01505 + 0.215756i
\(347\) 21.1110 4.48728i 1.13330 0.240890i 0.397178 0.917742i \(-0.369990\pi\)
0.736119 + 0.676852i \(0.236656\pi\)
\(348\) 0 0
\(349\) 22.1081 9.84316i 1.18342 0.526893i 0.281822 0.959467i \(-0.409061\pi\)
0.901598 + 0.432574i \(0.142395\pi\)
\(350\) −13.2112 40.6598i −0.706167 2.17336i
\(351\) 0 0
\(352\) −1.48153 + 0.950862i −0.0789657 + 0.0506811i
\(353\) 10.4900 18.1693i 0.558328 0.967052i −0.439309 0.898336i \(-0.644777\pi\)
0.997636 0.0687156i \(-0.0218901\pi\)
\(354\) 0 0
\(355\) 0.390890 3.71907i 0.0207463 0.197388i
\(356\) −49.1011 21.8612i −2.60236 1.15864i
\(357\) 0 0
\(358\) −8.02554 8.91327i −0.424163 0.471081i
\(359\) −12.6882 + 9.21850i −0.669657 + 0.486534i −0.869910 0.493210i \(-0.835823\pi\)
0.200254 + 0.979744i \(0.435823\pi\)
\(360\) 0 0
\(361\) −1.34496 4.13936i −0.0707873 0.217861i
\(362\) −11.1289 + 19.2758i −0.584922 + 1.01312i
\(363\) 0 0
\(364\) −31.6918 54.8919i −1.66110 2.87712i
\(365\) 7.55565 8.39140i 0.395481 0.439226i
\(366\) 0 0
\(367\) 0.856563 + 8.14965i 0.0447122 + 0.425408i 0.993866 + 0.110594i \(0.0352754\pi\)
−0.949153 + 0.314814i \(0.898058\pi\)
\(368\) 4.60807 14.1822i 0.240212 0.739298i
\(369\) 0 0
\(370\) −6.37542 + 4.63201i −0.331442 + 0.240807i
\(371\) −37.4413 + 16.6699i −1.94385 + 0.865460i
\(372\) 0 0
\(373\) −15.4086 26.6884i −0.797826 1.38188i −0.921029 0.389494i \(-0.872650\pi\)
0.123203 0.992381i \(-0.460683\pi\)
\(374\) 19.1511 + 9.88769i 0.990282 + 0.511280i
\(375\) 0 0
\(376\) −21.2463 4.51603i −1.09569 0.232897i
\(377\) 30.5061 + 22.1640i 1.57114 + 1.14150i
\(378\) 0 0
\(379\) 6.12378 18.8470i 0.314557 0.968108i −0.661379 0.750052i \(-0.730029\pi\)
0.975936 0.218056i \(-0.0699715\pi\)
\(380\) −10.2739 11.4103i −0.527040 0.585337i
\(381\) 0 0
\(382\) 4.82656 45.9216i 0.246948 2.34956i
\(383\) −15.8421 + 17.5945i −0.809495 + 0.899035i −0.996523 0.0833197i \(-0.973448\pi\)
0.187028 + 0.982355i \(0.440114\pi\)
\(384\) 0 0
\(385\) 13.2733 5.01365i 0.676469 0.255519i
\(386\) −42.5700 −2.16675
\(387\) 0 0
\(388\) 1.21776 + 0.884756i 0.0618225 + 0.0449167i
\(389\) −0.890219 8.46987i −0.0451359 0.429440i −0.993634 0.112657i \(-0.964064\pi\)
0.948498 0.316783i \(-0.102603\pi\)
\(390\) 0 0
\(391\) −8.91366 + 1.89466i −0.450783 + 0.0958169i
\(392\) 53.9079 + 24.0013i 2.72276 + 1.21225i
\(393\) 0 0
\(394\) 14.6031 + 3.10397i 0.735691 + 0.156376i
\(395\) 6.08063 0.305949
\(396\) 0 0
\(397\) −3.78373 −0.189900 −0.0949499 0.995482i \(-0.530269\pi\)
−0.0949499 + 0.995482i \(0.530269\pi\)
\(398\) 24.3324 + 5.17201i 1.21967 + 0.259249i
\(399\) 0 0
\(400\) −15.8743 7.06771i −0.793717 0.353386i
\(401\) −17.1698 + 3.64955i −0.857417 + 0.182250i −0.615587 0.788069i \(-0.711081\pi\)
−0.241830 + 0.970319i \(0.577748\pi\)
\(402\) 0 0
\(403\) 0.638333 + 6.07333i 0.0317976 + 0.302534i
\(404\) −42.6100 30.9580i −2.11993 1.54022i
\(405\) 0 0
\(406\) −110.829 −5.50035
\(407\) 6.70957 + 8.37706i 0.332581 + 0.415236i
\(408\) 0 0
\(409\) 18.9300 21.0239i 0.936031 1.03957i −0.0631055 0.998007i \(-0.520100\pi\)
0.999136 0.0415603i \(-0.0132329\pi\)
\(410\) 3.03101 28.8381i 0.149691 1.42421i
\(411\) 0 0
\(412\) −32.0142 35.5554i −1.57723 1.75169i
\(413\) 8.64439 26.6047i 0.425363 1.30913i
\(414\) 0 0
\(415\) −2.69055 1.95480i −0.132074 0.0959573i
\(416\) −1.87843 0.399273i −0.0920978 0.0195760i
\(417\) 0 0
\(418\) −22.2011 + 21.9643i −1.08589 + 1.07431i
\(419\) 16.1179 + 27.9170i 0.787409 + 1.36383i 0.927549 + 0.373701i \(0.121912\pi\)
−0.140140 + 0.990132i \(0.544755\pi\)
\(420\) 0 0
\(421\) −25.9830 + 11.5684i −1.26633 + 0.563807i −0.926364 0.376630i \(-0.877083\pi\)
−0.339968 + 0.940437i \(0.610416\pi\)
\(422\) −29.3421 + 21.3183i −1.42835 + 1.03776i
\(423\) 0 0
\(424\) −14.8023 + 45.5568i −0.718863 + 2.21243i
\(425\) 1.10998 + 10.5607i 0.0538419 + 0.512271i
\(426\) 0 0
\(427\) −13.9128 + 15.4517i −0.673288 + 0.747762i
\(428\) 9.58158 + 16.5958i 0.463143 + 0.802188i
\(429\) 0 0
\(430\) 2.58504 4.47741i 0.124662 0.215920i
\(431\) −8.27921 25.4808i −0.398796 1.22737i −0.925966 0.377607i \(-0.876747\pi\)
0.527170 0.849760i \(-0.323253\pi\)
\(432\) 0 0
\(433\) 7.60672 5.52661i 0.365556 0.265592i −0.389810 0.920895i \(-0.627459\pi\)
0.755366 + 0.655304i \(0.227459\pi\)
\(434\) −12.0101 13.3386i −0.576505 0.640274i
\(435\) 0 0
\(436\) 59.9349 + 26.6848i 2.87036 + 1.27797i
\(437\) 1.38023 13.1320i 0.0660254 0.628189i
\(438\) 0 0
\(439\) 8.94810 15.4986i 0.427069 0.739706i −0.569542 0.821962i \(-0.692879\pi\)
0.996611 + 0.0822565i \(0.0262127\pi\)
\(440\) 6.02578 15.4496i 0.287268 0.736531i
\(441\) 0 0
\(442\) 7.26552 + 22.3610i 0.345586 + 1.06360i
\(443\) −16.7921 + 7.47633i −0.797818 + 0.355211i −0.764820 0.644244i \(-0.777172\pi\)
−0.0329977 + 0.999455i \(0.510505\pi\)
\(444\) 0 0
\(445\) 12.8382 2.72885i 0.608590 0.129360i
\(446\) −1.47760 + 0.314073i −0.0699663 + 0.0148718i
\(447\) 0 0
\(448\) −28.9761 + 12.9010i −1.36899 + 0.609514i
\(449\) 1.85302 + 5.70301i 0.0874494 + 0.269142i 0.985212 0.171337i \(-0.0548087\pi\)
−0.897763 + 0.440479i \(0.854809\pi\)
\(450\) 0 0
\(451\) −39.4268 2.27830i −1.85654 0.107281i
\(452\) −1.72198 + 2.98255i −0.0809951 + 0.140288i
\(453\) 0 0
\(454\) −2.98589 + 28.4088i −0.140135 + 1.33329i
\(455\) 14.1399 + 6.29549i 0.662889 + 0.295137i
\(456\) 0 0
\(457\) 17.0861 + 18.9760i 0.799254 + 0.887661i 0.995679 0.0928576i \(-0.0296001\pi\)
−0.196426 + 0.980519i \(0.562933\pi\)
\(458\) −1.61911 + 1.17635i −0.0756562 + 0.0549674i
\(459\) 0 0
\(460\) 4.27717 + 13.1638i 0.199424 + 0.613764i
\(461\) 15.7842 27.3390i 0.735142 1.27330i −0.219519 0.975608i \(-0.570449\pi\)
0.954661 0.297695i \(-0.0962180\pi\)
\(462\) 0 0
\(463\) −1.88207 3.25984i −0.0874671 0.151498i 0.818973 0.573832i \(-0.194544\pi\)
−0.906440 + 0.422335i \(0.861211\pi\)
\(464\) −30.1419 + 33.4760i −1.39930 + 1.55408i
\(465\) 0 0
\(466\) 4.43662 + 42.2116i 0.205522 + 1.95541i
\(467\) 1.80825 5.56521i 0.0836756 0.257527i −0.900462 0.434935i \(-0.856771\pi\)
0.984137 + 0.177408i \(0.0567713\pi\)
\(468\) 0 0
\(469\) −2.98656 + 2.16986i −0.137907 + 0.100195i
\(470\) 9.56558 4.25887i 0.441227 0.196447i
\(471\) 0 0
\(472\) −16.3474 28.3145i −0.752449 1.30328i
\(473\) −6.25671 3.23032i −0.287684 0.148530i
\(474\) 0 0
\(475\) −15.0505 3.19907i −0.690562 0.146784i
\(476\) −37.4352 27.1983i −1.71584 1.24663i
\(477\) 0 0
\(478\) −0.151868 + 0.467402i −0.00694629 + 0.0213785i
\(479\) 17.1897 + 19.0911i 0.785418 + 0.872295i 0.994406 0.105623i \(-0.0336836\pi\)
−0.208988 + 0.977918i \(0.567017\pi\)
\(480\) 0 0
\(481\) −1.22384 + 11.6441i −0.0558023 + 0.530924i
\(482\) 24.4159 27.1166i 1.11211 1.23513i
\(483\) 0 0
\(484\) −42.2532 14.2315i −1.92060 0.646889i
\(485\) −0.367573 −0.0166906
\(486\) 0 0
\(487\) 4.29919 + 3.12355i 0.194815 + 0.141541i 0.680917 0.732361i \(-0.261582\pi\)
−0.486102 + 0.873902i \(0.661582\pi\)
\(488\) 2.54018 + 24.1682i 0.114989 + 1.09404i
\(489\) 0 0
\(490\) −27.8246 + 5.91431i −1.25699 + 0.267181i
\(491\) −2.25156 1.00246i −0.101611 0.0452403i 0.355301 0.934752i \(-0.384378\pi\)
−0.456913 + 0.889511i \(0.651045\pi\)
\(492\) 0 0
\(493\) 26.9265 + 5.72339i 1.21271 + 0.257769i
\(494\) −34.0682 −1.53280
\(495\) 0 0
\(496\) −7.29531 −0.327569
\(497\) 15.9731 + 3.39518i 0.716490 + 0.152295i
\(498\) 0 0
\(499\) 20.3744 + 9.07126i 0.912083 + 0.406085i 0.808473 0.588533i \(-0.200294\pi\)
0.103609 + 0.994618i \(0.466961\pi\)
\(500\) 35.3971 7.52388i 1.58301 0.336478i
\(501\) 0 0
\(502\) −2.19280 20.8631i −0.0978692 0.931164i
\(503\) 21.0129 + 15.2667i 0.936917 + 0.680710i 0.947677 0.319232i \(-0.103425\pi\)
−0.0107594 + 0.999942i \(0.503425\pi\)
\(504\) 0 0
\(505\) 12.8615 0.572331
\(506\) 26.3367 9.94804i 1.17081 0.442244i
\(507\) 0 0
\(508\) 31.6090 35.1054i 1.40242 1.55755i
\(509\) −2.91364 + 27.7214i −0.129145 + 1.22873i 0.717495 + 0.696563i \(0.245288\pi\)
−0.846640 + 0.532166i \(0.821378\pi\)
\(510\) 0 0
\(511\) 32.9941 + 36.6436i 1.45957 + 1.62102i
\(512\) −12.7852 + 39.3489i −0.565033 + 1.73899i
\(513\) 0 0
\(514\) 25.8731 + 18.7979i 1.14121 + 0.829139i
\(515\) 11.4281 + 2.42913i 0.503584 + 0.107040i
\(516\) 0 0
\(517\) −6.40606 12.7410i −0.281738 0.560349i
\(518\) −17.2062 29.8020i −0.755997 1.30943i
\(519\) 0 0
\(520\) 16.5262 7.35793i 0.724721 0.322667i
\(521\) 20.9287 15.2056i 0.916902 0.666168i −0.0258491 0.999666i \(-0.508229\pi\)
0.942751 + 0.333498i \(0.108229\pi\)
\(522\) 0 0
\(523\) −8.42503 + 25.9296i −0.368401 + 1.13382i 0.579423 + 0.815027i \(0.303278\pi\)
−0.947824 + 0.318794i \(0.896722\pi\)
\(524\) 0.102870 + 0.978739i 0.00449388 + 0.0427564i
\(525\) 0 0
\(526\) −24.4520 + 27.1567i −1.06616 + 1.18409i
\(527\) 2.22909 + 3.86090i 0.0971008 + 0.168184i
\(528\) 0 0
\(529\) 5.54836 9.61004i 0.241233 0.417828i
\(530\) −7.13563 21.9612i −0.309952 0.953934i
\(531\) 0 0
\(532\) 54.2433 39.4100i 2.35174 1.70864i
\(533\) −28.8272 32.0159i −1.24865 1.38676i
\(534\) 0 0
\(535\) −4.27500 1.90335i −0.184824 0.0822891i
\(536\) −0.450998 + 4.29096i −0.0194801 + 0.185341i
\(537\) 0 0
\(538\) 4.68906 8.12169i 0.202160 0.350151i
\(539\) 9.82654 + 37.4757i 0.423259 + 1.61419i
\(540\) 0 0
\(541\) −7.22580 22.2387i −0.310661 0.956118i −0.977504 0.210919i \(-0.932354\pi\)
0.666842 0.745199i \(-0.267646\pi\)
\(542\) −31.1015 + 13.8473i −1.33592 + 0.594791i
\(543\) 0 0
\(544\) −1.37133 + 0.291485i −0.0587953 + 0.0124973i
\(545\) −15.6709 + 3.33095i −0.671266 + 0.142682i
\(546\) 0 0
\(547\) 13.9617 6.21614i 0.596958 0.265783i −0.0859357 0.996301i \(-0.527388\pi\)
0.682894 + 0.730518i \(0.260721\pi\)
\(548\) 0.569506 + 1.75276i 0.0243281 + 0.0748741i
\(549\) 0 0
\(550\) −8.32077 31.7331i −0.354799 1.35310i
\(551\) −19.9439 + 34.5438i −0.849638 + 1.47162i
\(552\) 0 0
\(553\) −2.77554 + 26.4075i −0.118028 + 1.12296i
\(554\) 5.52471 + 2.45976i 0.234723 + 0.104505i
\(555\) 0 0
\(556\) −48.3873 53.7395i −2.05208 2.27906i
\(557\) 5.85761 4.25580i 0.248195 0.180324i −0.456732 0.889605i \(-0.650980\pi\)
0.704926 + 0.709280i \(0.250980\pi\)
\(558\) 0 0
\(559\) −2.37366 7.30537i −0.100395 0.308984i
\(560\) −9.24522 + 16.0132i −0.390682 + 0.676681i
\(561\) 0 0
\(562\) −24.5056 42.4450i −1.03371 1.79043i
\(563\) 21.1044 23.4389i 0.889446 0.987830i −0.110535 0.993872i \(-0.535257\pi\)
0.999982 + 0.00604200i \(0.00192324\pi\)
\(564\) 0 0
\(565\) −0.0879086 0.836394i −0.00369834 0.0351874i
\(566\) 5.46532 16.8205i 0.229725 0.707019i
\(567\) 0 0
\(568\) 15.4407 11.2183i 0.647879 0.470711i
\(569\) 10.2155 4.54824i 0.428256 0.190672i −0.181278 0.983432i \(-0.558023\pi\)
0.609534 + 0.792760i \(0.291357\pi\)
\(570\) 0 0
\(571\) −5.79531 10.0378i −0.242526 0.420068i 0.718907 0.695106i \(-0.244643\pi\)
−0.961433 + 0.275039i \(0.911309\pi\)
\(572\) −21.8482 43.4539i −0.913521 1.81690i
\(573\) 0 0
\(574\) 123.857 + 26.3267i 5.16970 + 1.09885i
\(575\) 11.2215 + 8.15293i 0.467971 + 0.340001i
\(576\) 0 0
\(577\) 5.23344 16.1069i 0.217871 0.670537i −0.781067 0.624448i \(-0.785324\pi\)
0.998937 0.0460895i \(-0.0146760\pi\)
\(578\) −16.5015 18.3268i −0.686373 0.762295i
\(579\) 0 0
\(580\) 4.37050 41.5826i 0.181475 1.72662i
\(581\) 9.71758 10.7925i 0.403153 0.447747i
\(582\) 0 0
\(583\) −29.4206 + 11.1129i −1.21848 + 0.460249i
\(584\) 57.6304 2.38476
\(585\) 0 0
\(586\) 33.9606 + 24.6738i 1.40290 + 1.01927i
\(587\) −0.945646 8.99722i −0.0390310 0.371355i −0.996551 0.0829870i \(-0.973554\pi\)
0.957520 0.288368i \(-0.0931127\pi\)
\(588\) 0 0
\(589\) −6.31870 + 1.34308i −0.260358 + 0.0553407i
\(590\) 14.3983 + 6.41054i 0.592769 + 0.263918i
\(591\) 0 0
\(592\) −13.6813 2.90804i −0.562296 0.119520i
\(593\) −20.4127 −0.838248 −0.419124 0.907929i \(-0.637663\pi\)
−0.419124 + 0.907929i \(0.637663\pi\)
\(594\) 0 0
\(595\) 11.2996 0.463237
\(596\) −63.1902 13.4315i −2.58837 0.550175i
\(597\) 0 0
\(598\) 28.0562 + 12.4914i 1.14731 + 0.510813i
\(599\) −41.1036 + 8.73685i −1.67945 + 0.356978i −0.946350 0.323144i \(-0.895260\pi\)
−0.733099 + 0.680122i \(0.761927\pi\)
\(600\) 0 0
\(601\) 1.11794 + 10.6365i 0.0456018 + 0.433872i 0.993374 + 0.114925i \(0.0366627\pi\)
−0.947772 + 0.318948i \(0.896671\pi\)
\(602\) 18.2649 + 13.2703i 0.744423 + 0.540855i
\(603\) 0 0
\(604\) 24.5364 0.998373
\(605\) 10.3902 3.25323i 0.422422 0.132263i
\(606\) 0 0
\(607\) −30.5120 + 33.8870i −1.23844 + 1.37543i −0.337595 + 0.941291i \(0.609614\pi\)
−0.900847 + 0.434138i \(0.857053\pi\)
\(608\) 0.212343 2.02030i 0.00861163 0.0819342i
\(609\) 0 0
\(610\) −7.83870 8.70576i −0.317380 0.352486i
\(611\) 4.80732 14.7954i 0.194483 0.598558i
\(612\) 0 0
\(613\) −21.9790 15.9687i −0.887725 0.644970i 0.0475592 0.998868i \(-0.484856\pi\)
−0.935284 + 0.353899i \(0.884856\pi\)
\(614\) −18.0214 3.83056i −0.727284 0.154589i
\(615\) 0 0
\(616\) 64.3453 + 33.2213i 2.59255 + 1.33852i
\(617\) 3.91559 + 6.78199i 0.157636 + 0.273033i 0.934016 0.357232i \(-0.116280\pi\)
−0.776380 + 0.630265i \(0.782946\pi\)
\(618\) 0 0
\(619\) 34.6480 15.4263i 1.39262 0.620034i 0.433015 0.901387i \(-0.357450\pi\)
0.959604 + 0.281353i \(0.0907831\pi\)
\(620\) 5.47820 3.98015i 0.220010 0.159847i
\(621\) 0 0
\(622\) 7.99883 24.6179i 0.320724 0.987087i
\(623\) 5.99100 + 57.0005i 0.240024 + 2.28368i
\(624\) 0 0
\(625\) 7.53756 8.37131i 0.301503 0.334852i
\(626\) 12.8364 + 22.2332i 0.513044 + 0.888618i
\(627\) 0 0
\(628\) −15.1629 + 26.2628i −0.605064 + 1.04800i
\(629\) 2.64130 + 8.12910i 0.105316 + 0.324128i
\(630\) 0 0
\(631\) 22.3432 16.2333i 0.889468 0.646237i −0.0462710 0.998929i \(-0.514734\pi\)
0.935739 + 0.352692i \(0.114734\pi\)
\(632\) 20.7658 + 23.0628i 0.826021 + 0.917389i
\(633\) 0 0
\(634\) 28.7428 + 12.7971i 1.14152 + 0.508238i
\(635\) −1.20579 + 11.4724i −0.0478505 + 0.455267i
\(636\) 0 0
\(637\) −21.1317 + 36.6012i −0.837269 + 1.45019i
\(638\) −84.9029 4.90614i −3.36134 0.194236i
\(639\) 0 0
\(640\) −5.84701 17.9952i −0.231123 0.711324i
\(641\) −4.08552 + 1.81899i −0.161368 + 0.0718457i −0.485831 0.874053i \(-0.661483\pi\)
0.324463 + 0.945898i \(0.394816\pi\)
\(642\) 0 0
\(643\) 7.30833 1.55343i 0.288212 0.0612614i −0.0615368 0.998105i \(-0.519600\pi\)
0.349749 + 0.936843i \(0.386267\pi\)
\(644\) −59.1211 + 12.5666i −2.32970 + 0.495192i
\(645\) 0 0
\(646\) −22.7209 + 10.1160i −0.893942 + 0.398009i
\(647\) −3.55862 10.9523i −0.139904 0.430579i 0.856417 0.516285i \(-0.172686\pi\)
−0.996320 + 0.0857057i \(0.972686\pi\)
\(648\) 0 0
\(649\) 7.79994 19.9984i 0.306174 0.785006i
\(650\) 17.8936 30.9926i 0.701845 1.21563i
\(651\) 0 0
\(652\) −5.92158 + 56.3401i −0.231907 + 2.20645i
\(653\) 19.3109 + 8.59776i 0.755693 + 0.336456i 0.748163 0.663515i \(-0.230936\pi\)
0.00753058 + 0.999972i \(0.497603\pi\)
\(654\) 0 0
\(655\) −0.160806 0.178593i −0.00628321 0.00697821i
\(656\) 41.6372 30.2512i 1.62566 1.18111i
\(657\) 0 0
\(658\) 14.1295 + 43.4862i 0.550826 + 1.69527i
\(659\) −13.5177 + 23.4133i −0.526575 + 0.912054i 0.472946 + 0.881091i \(0.343191\pi\)
−0.999521 + 0.0309624i \(0.990143\pi\)
\(660\) 0 0
\(661\) 13.3809 + 23.1764i 0.520456 + 0.901457i 0.999717 + 0.0237842i \(0.00757146\pi\)
−0.479261 + 0.877673i \(0.659095\pi\)
\(662\) 26.9742 29.9579i 1.04838 1.16435i
\(663\) 0 0
\(664\) −1.77422 16.8806i −0.0688532 0.655095i
\(665\) −5.05952 + 15.5716i −0.196200 + 0.603841i
\(666\) 0 0
\(667\) 29.0902 21.1353i 1.12638 0.818362i
\(668\) 23.6654 10.5365i 0.915642 0.407670i
\(669\) 0 0
\(670\) −1.03995 1.80125i −0.0401768 0.0695883i
\(671\) −11.3422 + 11.2212i −0.437861 + 0.433191i
\(672\) 0 0
\(673\) −48.0644 10.2164i −1.85275 0.393813i −0.859627 0.510922i \(-0.829304\pi\)
−0.993119 + 0.117108i \(0.962638\pi\)
\(674\) −57.8571 42.0356i −2.22857 1.61915i
\(675\) 0 0
\(676\) 0.112939 0.347591i 0.00434382 0.0133689i
\(677\) −30.5707 33.9522i −1.17493 1.30489i −0.943245 0.332097i \(-0.892244\pi\)
−0.231681 0.972792i \(-0.574423\pi\)
\(678\) 0 0
\(679\) 0.167781 1.59633i 0.00643883 0.0612614i
\(680\) 8.83689 9.81436i 0.338879 0.376363i
\(681\) 0 0
\(682\) −8.61014 10.7500i −0.329699 0.411638i
\(683\) 47.1991 1.80602 0.903012 0.429615i \(-0.141351\pi\)
0.903012 + 0.429615i \(0.141351\pi\)
\(684\) 0 0
\(685\) −0.364093 0.264529i −0.0139113 0.0101071i
\(686\) −5.20356 49.5086i −0.198673 1.89025i
\(687\) 0 0
\(688\) 8.97577 1.90786i 0.342198 0.0727364i
\(689\) −31.3415 13.9541i −1.19402 0.531610i
\(690\) 0 0
\(691\) −29.1327 6.19234i −1.10826 0.235568i −0.382799 0.923832i \(-0.625040\pi\)
−0.725460 + 0.688264i \(0.758373\pi\)
\(692\) 31.8002 1.20886
\(693\) 0 0
\(694\) −53.1004 −2.01566
\(695\) 17.2728 + 3.67145i 0.655196 + 0.139266i
\(696\) 0 0
\(697\) −28.7322 12.7924i −1.08831 0.484546i
\(698\) −58.2397 + 12.3792i −2.20441 + 0.468561i
\(699\) 0 0
\(700\) 7.36209 + 70.0456i 0.278261 + 2.64747i
\(701\) 0.479434 + 0.348329i 0.0181080 + 0.0131562i 0.596802 0.802388i \(-0.296438\pi\)
−0.578694 + 0.815544i \(0.696438\pi\)
\(702\) 0 0
\(703\) −12.3851 −0.467115
\(704\) −22.7688 + 8.60036i −0.858132 + 0.324138i
\(705\) 0 0
\(706\) −34.5391 + 38.3595i −1.29990 + 1.44368i
\(707\) −5.87072 + 55.8562i −0.220791 + 2.10069i
\(708\) 0 0
\(709\) −22.6402 25.1445i −0.850272 0.944323i 0.148735 0.988877i \(-0.452480\pi\)
−0.999007 + 0.0445541i \(0.985813\pi\)
\(710\) −2.84312 + 8.75023i −0.106700 + 0.328390i
\(711\) 0 0
\(712\) 54.1937 + 39.3740i 2.03099 + 1.47560i
\(713\) 5.69610 + 1.21074i 0.213321 + 0.0453427i
\(714\) 0 0
\(715\) 10.5535 + 5.44873i 0.394678 + 0.203771i
\(716\) 9.87963 + 17.1120i 0.369219 + 0.639507i
\(717\) 0 0
\(718\) 35.2505 15.6945i 1.31554 0.585715i
\(719\) 39.3929 28.6206i 1.46911 1.06737i 0.488236 0.872712i \(-0.337641\pi\)
0.980871 0.194657i \(-0.0623593\pi\)
\(720\) 0 0
\(721\) −15.7659 + 48.5223i −0.587151 + 1.80707i
\(722\) 1.11932 + 10.6496i 0.0416568 + 0.396338i
\(723\) 0 0
\(724\) 24.5358 27.2498i 0.911867 1.01273i
\(725\) −20.9502 36.2868i −0.778071 1.34766i
\(726\) 0 0
\(727\) 19.2353 33.3166i 0.713399 1.23564i −0.250175 0.968201i \(-0.580488\pi\)
0.963574 0.267442i \(-0.0861784\pi\)
\(728\) 24.4112 + 75.1299i 0.904739 + 2.78450i
\(729\) 0 0
\(730\) −22.4756 + 16.3295i −0.831861 + 0.604382i
\(731\) −3.75226 4.16730i −0.138782 0.154133i
\(732\) 0 0
\(733\) 8.72641 + 3.88525i 0.322317 + 0.143505i 0.561516 0.827466i \(-0.310218\pi\)
−0.239199 + 0.970971i \(0.576885\pi\)
\(734\) 2.10743 20.0508i 0.0777866 0.740090i
\(735\) 0 0
\(736\) −0.915635 + 1.58593i −0.0337507 + 0.0584580i
\(737\) −2.38397 + 1.53006i −0.0878146 + 0.0563605i
\(738\) 0 0
\(739\) 5.87978 + 18.0961i 0.216291 + 0.665675i 0.999059 + 0.0433623i \(0.0138070\pi\)
−0.782768 + 0.622313i \(0.786193\pi\)
\(740\) 11.8601 5.28046i 0.435986 0.194113i
\(741\) 0 0
\(742\) 98.6321 20.9649i 3.62090 0.769646i
\(743\) 12.4371 2.64358i 0.456272 0.0969837i 0.0259585 0.999663i \(-0.491736\pi\)
0.430314 + 0.902679i \(0.358403\pi\)
\(744\) 0 0
\(745\) 14.4117 6.41649i 0.528003 0.235082i
\(746\) 23.4298 + 72.1095i 0.857826 + 2.64012i
\(747\) 0 0
\(748\) −27.4740 22.4930i −1.00455 0.822425i
\(749\) 10.2174 17.6970i 0.373335 0.646636i
\(750\) 0 0
\(751\) 3.98798 37.9431i 0.145523 1.38456i −0.641256 0.767327i \(-0.721586\pi\)
0.786779 0.617235i \(-0.211747\pi\)
\(752\) 16.9778 + 7.55901i 0.619117 + 0.275649i
\(753\) 0 0
\(754\) −62.0774 68.9439i −2.26072 2.51079i
\(755\) −4.84739 + 3.52184i −0.176415 + 0.128173i
\(756\) 0 0
\(757\) 2.01311 + 6.19571i 0.0731677 + 0.225187i 0.980952 0.194250i \(-0.0622274\pi\)
−0.907784 + 0.419437i \(0.862227\pi\)
\(758\) −24.3781 + 42.2242i −0.885453 + 1.53365i
\(759\) 0 0
\(760\) 9.56805 + 16.5724i 0.347070 + 0.601142i
\(761\) 30.0628 33.3881i 1.08977 1.21032i 0.113555 0.993532i \(-0.463776\pi\)
0.976219 0.216785i \(-0.0695570\pi\)
\(762\) 0 0
\(763\) −7.31286 69.5772i −0.264743 2.51887i
\(764\) −23.5068 + 72.3464i −0.850445 + 2.61740i
\(765\) 0 0
\(766\) 47.1252 34.2385i 1.70270 1.23709i
\(767\) 21.3920 9.52432i 0.772419 0.343903i
\(768\) 0 0
\(769\) 0.0411390 + 0.0712548i 0.00148351 + 0.00256951i 0.866766 0.498715i \(-0.166194\pi\)
−0.865283 + 0.501284i \(0.832861\pi\)
\(770\) −34.5077 + 5.27599i −1.24357 + 0.190133i
\(771\) 0 0
\(772\) 68.5986 + 14.5811i 2.46892 + 0.524784i
\(773\) 15.3850 + 11.1779i 0.553361 + 0.402040i 0.829023 0.559215i \(-0.188897\pi\)
−0.275662 + 0.961255i \(0.588897\pi\)
\(774\) 0 0
\(775\) 2.09693 6.45369i 0.0753240 0.231823i
\(776\) −1.25529 1.39414i −0.0450624 0.0500468i
\(777\) 0 0
\(778\) −2.19023 + 20.8387i −0.0785237 + 0.747103i
\(779\) 30.4940 33.8670i 1.09256 1.21341i
\(780\) 0 0
\(781\) 12.0862 + 3.30804i 0.432478 + 0.118371i
\(782\) 22.4205 0.801755
\(783\) 0 0
\(784\) −40.8464 29.6766i −1.45880 1.05988i
\(785\) −0.774077 7.36485i −0.0276280 0.262863i
\(786\) 0 0
\(787\) −8.44126 + 1.79425i −0.300899 + 0.0639580i −0.355887 0.934529i \(-0.615821\pi\)
0.0549883 + 0.998487i \(0.482488\pi\)
\(788\) −22.4686 10.0037i −0.800412 0.356366i
\(789\) 0 0
\(790\) −14.6334 3.11043i −0.520634 0.110664i
\(791\) 3.67249 0.130579
\(792\) 0 0
\(793\) −17.4049 −0.618068
\(794\) 9.10579 + 1.93550i 0.323152 + 0.0686882i
\(795\) 0 0
\(796\) −37.4385 16.6687i −1.32697 0.590805i
\(797\) 16.2116 3.44587i 0.574243 0.122059i 0.0883685 0.996088i \(-0.471835\pi\)
0.485874 + 0.874029i \(0.338501\pi\)
\(798\) 0 0
\(799\) −1.18714 11.2949i −0.0419979 0.399583i
\(800\) 1.72639 + 1.25429i 0.0610370 + 0.0443460i
\(801\) 0 0
\(802\) 43.1870 1.52499
\(803\) 23.6537 + 29.5322i 0.834720 + 1.04217i
\(804\) 0 0
\(805\) 9.87615 10.9686i 0.348089 0.386592i
\(806\) 1.57051 14.9424i 0.0553188 0.526324i
\(807\) 0 0
\(808\) 43.9232 + 48.7817i 1.54521 + 1.71613i
\(809\) −6.99703 + 21.5347i −0.246003 + 0.757118i 0.749467 + 0.662041i \(0.230310\pi\)
−0.995470 + 0.0950768i \(0.969690\pi\)
\(810\) 0 0
\(811\) 45.7773 + 33.2592i 1.60746 + 1.16789i 0.870823 + 0.491597i \(0.163587\pi\)
0.736635 + 0.676290i \(0.236413\pi\)
\(812\) 178.593 + 37.9612i 6.26740 + 1.33218i
\(813\) 0 0
\(814\) −11.8619 23.5921i −0.415759 0.826903i
\(815\) −6.91691 11.9804i −0.242289 0.419657i
\(816\) 0 0
\(817\) 7.42296 3.30491i 0.259696 0.115624i
\(818\) −56.3108 + 40.9122i −1.96886 + 1.43046i
\(819\) 0 0
\(820\) −14.7619 + 45.4325i −0.515508 + 1.58657i
\(821\) −4.94936 47.0900i −0.172734 1.64345i −0.646581 0.762845i \(-0.723802\pi\)
0.473847 0.880607i \(-0.342865\pi\)
\(822\) 0 0
\(823\) −4.67112 + 5.18781i −0.162825 + 0.180836i −0.819036 0.573742i \(-0.805491\pi\)
0.656211 + 0.754577i \(0.272158\pi\)
\(824\) 29.8148 + 51.6407i 1.03865 + 1.79899i
\(825\) 0 0
\(826\) −34.4124 + 59.6041i −1.19736 + 2.07389i
\(827\) −12.3062 37.8747i −0.427929 1.31703i −0.900161 0.435557i \(-0.856551\pi\)
0.472232 0.881474i \(-0.343449\pi\)
\(828\) 0 0
\(829\) 26.7634 19.4447i 0.929530 0.675343i −0.0163480 0.999866i \(-0.505204\pi\)
0.945878 + 0.324524i \(0.105204\pi\)
\(830\) 5.47505 + 6.08065i 0.190042 + 0.211063i
\(831\) 0 0
\(832\) −24.2554 10.7992i −0.840905 0.374395i
\(833\) −3.22511 + 30.6849i −0.111744 + 1.06317i
\(834\) 0 0
\(835\) −3.16295 + 5.47840i −0.109459 + 0.189588i
\(836\) 43.2987 27.7896i 1.49752 0.961125i
\(837\) 0 0
\(838\) −24.5083 75.4288i −0.846626 2.60565i
\(839\) 31.2378 13.9080i 1.07845 0.480156i 0.210899 0.977508i \(-0.432361\pi\)
0.867549 + 0.497352i \(0.165694\pi\)
\(840\) 0 0
\(841\) −77.8808 + 16.5541i −2.68555 + 0.570830i
\(842\) 68.4473 14.5489i 2.35885 0.501389i
\(843\) 0 0
\(844\) 54.5847 24.3027i 1.87888 0.836532i
\(845\) 0.0275793 + 0.0848805i 0.000948758 + 0.00291998i
\(846\) 0 0
\(847\) 9.38576 + 46.6085i 0.322498 + 1.60149i
\(848\) 20.4923 35.4937i 0.703708 1.21886i
\(849\) 0 0
\(850\) 2.73092 25.9829i 0.0936696 0.891207i
\(851\) 10.1996 + 4.54113i 0.349636 + 0.155668i
\(852\) 0 0
\(853\) −5.11297 5.67853i −0.175065 0.194429i 0.649226 0.760595i \(-0.275093\pi\)
−0.824291 + 0.566166i \(0.808426\pi\)
\(854\) 41.3861 30.0688i 1.41620 1.02893i
\(855\) 0 0
\(856\) −7.38038 22.7145i −0.252256 0.776365i
\(857\) −13.8026 + 23.9068i −0.471488 + 0.816641i −0.999468 0.0326159i \(-0.989616\pi\)
0.527980 + 0.849257i \(0.322950\pi\)
\(858\) 0 0
\(859\) 8.51219 + 14.7435i 0.290432 + 0.503043i 0.973912 0.226926i \(-0.0728676\pi\)
−0.683480 + 0.729969i \(0.739534\pi\)
\(860\) −5.69921 + 6.32962i −0.194342 + 0.215838i
\(861\) 0 0
\(862\) 6.89025 + 65.5563i 0.234683 + 2.23286i
\(863\) 3.17117 9.75984i 0.107948 0.332229i −0.882463 0.470381i \(-0.844116\pi\)
0.990411 + 0.138152i \(0.0441164\pi\)
\(864\) 0 0
\(865\) −6.28240 + 4.56443i −0.213608 + 0.155195i
\(866\) −21.1331 + 9.40907i −0.718132 + 0.319733i
\(867\) 0 0
\(868\) 14.7848 + 25.6080i 0.501828 + 0.869191i
\(869\) −3.29525 + 20.1071i −0.111784 + 0.682087i
\(870\) 0 0
\(871\) −3.02264 0.642482i −0.102418 0.0217697i
\(872\) −66.1511 48.0616i −2.24016 1.62757i
\(873\) 0 0
\(874\) −10.0391 + 30.8970i −0.339576 + 1.04511i
\(875\) −25.8212 28.6774i −0.872917 0.969472i
\(876\) 0 0
\(877\) 2.32707 22.1406i 0.0785796 0.747635i −0.882304 0.470681i \(-0.844008\pi\)
0.960883 0.276954i \(-0.0893250\pi\)
\(878\) −29.4622 + 32.7211i −0.994301 + 1.10428i
\(879\) 0 0
\(880\) −7.79136 + 11.8580i −0.262647 + 0.399732i
\(881\) −3.58540 −0.120795 −0.0603976 0.998174i \(-0.519237\pi\)
−0.0603976 + 0.998174i \(0.519237\pi\)
\(882\) 0 0
\(883\) −36.3972 26.4441i −1.22486 0.889916i −0.228370 0.973574i \(-0.573340\pi\)
−0.996495 + 0.0836583i \(0.973340\pi\)
\(884\) −4.04880 38.5218i −0.136176 1.29563i
\(885\) 0 0
\(886\) 44.2357 9.40259i 1.48613 0.315886i
\(887\) 13.5238 + 6.02120i 0.454086 + 0.202172i 0.621018 0.783796i \(-0.286719\pi\)
−0.166932 + 0.985968i \(0.553386\pi\)
\(888\) 0 0
\(889\) −49.2728 10.4733i −1.65256 0.351262i
\(890\) −32.2919 −1.08243
\(891\) 0 0
\(892\) 2.48862 0.0833253
\(893\) 16.0967 + 3.42145i 0.538654 + 0.114494i
\(894\) 0 0
\(895\) −4.40798 1.96256i −0.147343 0.0656012i
\(896\) 80.8202 17.1789i 2.70001 0.573905i
\(897\) 0 0
\(898\) −1.54215 14.6726i −0.0514621 0.489629i
\(899\) −14.2316 10.3399i −0.474651 0.344854i
\(900\) 0 0
\(901\) −25.0458 −0.834397
\(902\) 93.7179 + 25.6509i 3.12047 + 0.854083i
\(903\) 0 0
\(904\) 2.87209 3.18978i 0.0955243 0.106090i
\(905\) −0.935973 + 8.90519i −0.0311128 + 0.296019i
\(906\) 0 0
\(907\) 16.0417 + 17.8162i 0.532657 + 0.591576i 0.948072 0.318056i \(-0.103030\pi\)
−0.415415 + 0.909632i \(0.636363\pi\)
\(908\) 14.5421 44.7561i 0.482598 1.48528i
\(909\) 0 0
\(910\) −30.8083 22.3835i −1.02128 0.742006i
\(911\) 21.9582 + 4.66736i 0.727507 + 0.154636i 0.556754 0.830677i \(-0.312047\pi\)
0.170753 + 0.985314i \(0.445380\pi\)
\(912\) 0 0
\(913\) 7.92211 7.83762i 0.262184 0.259387i
\(914\) −31.4120 54.4071i −1.03902 1.79963i
\(915\) 0 0
\(916\) 3.01201 1.34103i 0.0995197 0.0443090i
\(917\) 0.849011 0.616842i 0.0280368 0.0203699i
\(918\) 0 0
\(919\) 5.84951 18.0029i 0.192958 0.593862i −0.807037 0.590501i \(-0.798930\pi\)
0.999994 0.00336124i \(-0.00106992\pi\)
\(920\) −1.80318 17.1561i −0.0594489 0.565619i
\(921\) 0 0
\(922\) −51.9704 + 57.7190i −1.71155 + 1.90087i
\(923\) 6.83475 + 11.8381i 0.224969 + 0.389657i
\(924\) 0 0
\(925\) 6.50503 11.2670i 0.213884 0.370458i
\(926\) 2.86181 + 8.80775i 0.0940450 + 0.289441i
\(927\) 0 0
\(928\) 4.47541 3.25158i 0.146913 0.106738i
\(929\) 14.7766 + 16.4111i 0.484805 + 0.538431i 0.935069 0.354464i \(-0.115337\pi\)
−0.450264 + 0.892895i \(0.648670\pi\)
\(930\) 0 0
\(931\) −40.8419 18.1840i −1.33854 0.595956i
\(932\) 7.30902 69.5407i 0.239415 2.27788i
\(933\) 0 0
\(934\) −7.19844 + 12.4681i −0.235540 + 0.407968i
\(935\) 8.65627 + 0.500206i 0.283090 + 0.0163585i
\(936\) 0 0
\(937\) 3.73772 + 11.5035i 0.122106 + 0.375804i 0.993363 0.115024i \(-0.0366945\pi\)
−0.871257 + 0.490828i \(0.836694\pi\)
\(938\) 8.29731 3.69420i 0.270917 0.120620i
\(939\) 0 0
\(940\) −16.8730 + 3.58647i −0.550337 + 0.116978i
\(941\) 20.1849 4.29044i 0.658009 0.139864i 0.133207 0.991088i \(-0.457472\pi\)
0.524803 + 0.851224i \(0.324139\pi\)
\(942\) 0 0
\(943\) −37.5304 + 16.7096i −1.22216 + 0.544140i
\(944\) 8.64439 + 26.6047i 0.281351 + 0.865909i
\(945\) 0 0
\(946\) 13.4048 + 10.9745i 0.435827 + 0.356812i
\(947\) 2.63723 4.56781i 0.0856983 0.148434i −0.819990 0.572378i \(-0.806021\pi\)
0.905689 + 0.423944i \(0.139355\pi\)
\(948\) 0 0
\(949\) −4.31448 + 41.0495i −0.140054 + 1.33252i
\(950\) 34.5835 + 15.3976i 1.12204 + 0.499563i
\(951\) 0 0
\(952\) 38.5890 + 42.8574i 1.25068 + 1.38902i
\(953\) −43.2076 + 31.3922i −1.39963 + 1.01689i −0.404902 + 0.914360i \(0.632694\pi\)
−0.994730 + 0.102532i \(0.967306\pi\)
\(954\) 0 0
\(955\) −5.74026 17.6667i −0.185751 0.571681i
\(956\) 0.404820 0.701169i 0.0130928 0.0226774i
\(957\) 0 0
\(958\) −31.6025 54.7371i −1.02103 1.76848i
\(959\) 1.31501 1.46047i 0.0424639 0.0471610i
\(960\) 0 0
\(961\) 2.94259 + 27.9969i 0.0949222 + 0.903125i
\(962\) 8.90156 27.3962i 0.286998 0.883288i
\(963\) 0 0
\(964\) −48.6326 + 35.3336i −1.56635 + 1.13802i
\(965\) −15.6452 + 6.96567i −0.503635 + 0.224233i
\(966\) 0 0
\(967\) −22.2765 38.5840i −0.716363 1.24078i −0.962432 0.271524i \(-0.912472\pi\)
0.246069 0.969252i \(-0.420861\pi\)
\(968\) 47.8224 + 28.2983i 1.53707 + 0.909541i
\(969\) 0 0
\(970\) 0.884589 + 0.188025i 0.0284024 + 0.00603712i
\(971\) 32.0517 + 23.2869i 1.02859 + 0.747313i 0.968026 0.250852i \(-0.0807106\pi\)
0.0605623 + 0.998164i \(0.480711\pi\)
\(972\) 0 0
\(973\) −23.8290 + 73.3381i −0.763922 + 2.35111i
\(974\) −8.74850 9.71619i −0.280320 0.311327i
\(975\) 0 0
\(976\) 2.17339 20.6785i 0.0695686 0.661901i
\(977\) −38.0403 + 42.2480i −1.21702 + 1.35163i −0.299421 + 0.954121i \(0.596794\pi\)
−0.917596 + 0.397514i \(0.869873\pi\)
\(978\) 0 0
\(979\) 2.06624 + 43.9316i 0.0660374 + 1.40406i
\(980\) 46.8633 1.49699
\(981\) 0 0
\(982\) 4.90574 + 3.56423i 0.156548 + 0.113739i
\(983\) −1.16822 11.1149i −0.0372604 0.354509i −0.997229 0.0743996i \(-0.976296\pi\)
0.959968 0.280109i \(-0.0903707\pi\)
\(984\) 0 0
\(985\) 5.87476 1.24872i 0.187185 0.0397875i
\(986\) −61.8726 27.5475i −1.97043 0.877290i
\(987\) 0 0
\(988\) 54.8986 + 11.6691i 1.74656 + 0.371242i
\(989\) −7.32482 −0.232916
\(990\) 0 0
\(991\) −37.0475 −1.17685 −0.588426 0.808551i \(-0.700252\pi\)
−0.588426 + 0.808551i \(0.700252\pi\)
\(992\) 0.876321 + 0.186268i 0.0278232 + 0.00591401i
\(993\) 0 0
\(994\) −36.7035 16.3414i −1.16416 0.518319i
\(995\) 9.78884 2.08068i 0.310327 0.0659620i
\(996\) 0 0
\(997\) −4.50445 42.8570i −0.142657 1.35729i −0.798317 0.602237i \(-0.794276\pi\)
0.655660 0.755056i \(-0.272390\pi\)
\(998\) −44.3921 32.2527i −1.40521 1.02094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.h.379.1 32
3.2 odd 2 inner 891.2.n.h.379.4 32
9.2 odd 6 297.2.f.b.82.1 16
9.4 even 3 inner 891.2.n.h.676.4 32
9.5 odd 6 inner 891.2.n.h.676.1 32
9.7 even 3 297.2.f.b.82.4 yes 16
11.9 even 5 inner 891.2.n.h.460.4 32
33.20 odd 10 inner 891.2.n.h.460.1 32
99.20 odd 30 297.2.f.b.163.1 yes 16
99.25 even 15 3267.2.a.bj.1.8 8
99.31 even 15 inner 891.2.n.h.757.1 32
99.47 odd 30 3267.2.a.bj.1.1 8
99.52 odd 30 3267.2.a.bi.1.1 8
99.74 even 30 3267.2.a.bi.1.8 8
99.86 odd 30 inner 891.2.n.h.757.4 32
99.97 even 15 297.2.f.b.163.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.b.82.1 16 9.2 odd 6
297.2.f.b.82.4 yes 16 9.7 even 3
297.2.f.b.163.1 yes 16 99.20 odd 30
297.2.f.b.163.4 yes 16 99.97 even 15
891.2.n.h.379.1 32 1.1 even 1 trivial
891.2.n.h.379.4 32 3.2 odd 2 inner
891.2.n.h.460.1 32 33.20 odd 10 inner
891.2.n.h.460.4 32 11.9 even 5 inner
891.2.n.h.676.1 32 9.5 odd 6 inner
891.2.n.h.676.4 32 9.4 even 3 inner
891.2.n.h.757.1 32 99.31 even 15 inner
891.2.n.h.757.4 32 99.86 odd 30 inner
3267.2.a.bi.1.1 8 99.52 odd 30
3267.2.a.bi.1.8 8 99.74 even 30
3267.2.a.bj.1.1 8 99.47 odd 30
3267.2.a.bj.1.8 8 99.25 even 15