Properties

Label 297.2.f.b.163.1
Level $297$
Weight $2$
Character 297.163
Analytic conductor $2.372$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(82,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{14} + 51x^{12} - 249x^{10} + 1476x^{8} - 2875x^{6} + 2335x^{4} + 125x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 163.1
Root \(-1.18970 + 0.386556i\) of defining polynomial
Character \(\chi\) \(=\) 297.163
Dual form 297.2.f.b.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.760284 + 2.33991i) q^{2} +(-3.27913 - 2.38243i) q^{4} +(-0.305860 - 0.941339i) q^{5} +(-3.49672 - 2.54052i) q^{7} +(4.08684 - 2.96926i) q^{8} +2.43519 q^{10} +(2.79120 + 1.79142i) q^{11} +(1.11803 - 3.44095i) q^{13} +(8.60310 - 6.25052i) q^{14} +(1.33563 + 4.11065i) q^{16} +(-0.816208 - 2.51203i) q^{17} +(3.09629 - 2.24958i) q^{19} +(-1.23972 + 3.81546i) q^{20} +(-6.31388 + 5.16917i) q^{22} -3.45011 q^{23} +(3.25252 - 2.36309i) q^{25} +(7.20151 + 5.23221i) q^{26} +(5.41361 + 16.6614i) q^{28} +(-8.43168 - 6.12597i) q^{29} +(-0.521582 + 1.60526i) q^{31} -0.530785 q^{32} +6.49848 q^{34} +(-1.32198 + 4.06865i) q^{35} +(-2.61803 - 1.90211i) q^{37} +(2.90977 + 8.95537i) q^{38} +(-4.04508 - 2.93893i) q^{40} +(-9.63335 + 6.99904i) q^{41} -2.12307 q^{43} +(-4.88477 - 12.5241i) q^{44} +(2.62307 - 8.07297i) q^{46} +(3.47861 - 2.52736i) q^{47} +(3.60973 + 11.1096i) q^{49} +(3.05659 + 9.40723i) q^{50} +(-11.8640 + 8.61970i) q^{52} +(2.93021 - 9.01826i) q^{53} +(0.832623 - 3.17539i) q^{55} -21.8340 q^{56} +(20.7447 - 15.0719i) q^{58} +(5.23607 + 3.80423i) q^{59} +(-1.48656 - 4.57516i) q^{61} +(-3.35963 - 2.44091i) q^{62} +(-2.26771 + 6.97930i) q^{64} -3.58107 q^{65} +0.854102 q^{67} +(-3.30828 + 10.1818i) q^{68} +(-8.51520 - 6.18665i) q^{70} +(1.16751 + 3.59324i) q^{71} +(-9.22952 - 6.70564i) q^{73} +(6.44123 - 4.67983i) q^{74} -15.5126 q^{76} +(-5.20891 - 13.3552i) q^{77} +(1.89841 - 5.84272i) q^{79} +(3.46100 - 2.51456i) q^{80} +(-9.05306 - 27.8625i) q^{82} +(-1.03831 - 3.19558i) q^{83} +(-2.11503 + 1.53666i) q^{85} +(1.61413 - 4.96779i) q^{86} +(16.7264 - 0.966542i) q^{88} +13.2605 q^{89} +(-12.6513 + 9.19169i) q^{91} +(11.3134 + 8.21964i) q^{92} +(3.26907 + 10.0612i) q^{94} +(-3.06465 - 2.22660i) q^{95} +(-0.114759 + 0.353191i) q^{97} -28.7399 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{4} + 12 q^{10} - 10 q^{16} - 2 q^{19} - 36 q^{22} + 32 q^{25} + 42 q^{28} - 26 q^{31} - 48 q^{34} - 24 q^{37} - 20 q^{40} + 24 q^{43} - 16 q^{46} + 24 q^{49} - 40 q^{52} - 16 q^{55} + 106 q^{58}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.760284 + 2.33991i −0.537602 + 1.65457i 0.200357 + 0.979723i \(0.435790\pi\)
−0.737959 + 0.674846i \(0.764210\pi\)
\(3\) 0 0
\(4\) −3.27913 2.38243i −1.63956 1.19121i
\(5\) −0.305860 0.941339i −0.136785 0.420980i 0.859079 0.511843i \(-0.171037\pi\)
−0.995863 + 0.0908638i \(0.971037\pi\)
\(6\) 0 0
\(7\) −3.49672 2.54052i −1.32164 0.960226i −0.999910 0.0133937i \(-0.995737\pi\)
−0.321727 0.946832i \(-0.604263\pi\)
\(8\) 4.08684 2.96926i 1.44492 1.04979i
\(9\) 0 0
\(10\) 2.43519 0.770075
\(11\) 2.79120 + 1.79142i 0.841578 + 0.540135i
\(12\) 0 0
\(13\) 1.11803 3.44095i 0.310087 0.954349i −0.667643 0.744482i \(-0.732697\pi\)
0.977730 0.209868i \(-0.0673033\pi\)
\(14\) 8.60310 6.25052i 2.29927 1.67052i
\(15\) 0 0
\(16\) 1.33563 + 4.11065i 0.333908 + 1.02766i
\(17\) −0.816208 2.51203i −0.197959 0.609257i −0.999929 0.0118921i \(-0.996215\pi\)
0.801970 0.597365i \(-0.203785\pi\)
\(18\) 0 0
\(19\) 3.09629 2.24958i 0.710337 0.516090i −0.172945 0.984931i \(-0.555328\pi\)
0.883282 + 0.468841i \(0.155328\pi\)
\(20\) −1.23972 + 3.81546i −0.277209 + 0.853163i
\(21\) 0 0
\(22\) −6.31388 + 5.16917i −1.34612 + 1.10207i
\(23\) −3.45011 −0.719398 −0.359699 0.933068i \(-0.617121\pi\)
−0.359699 + 0.933068i \(0.617121\pi\)
\(24\) 0 0
\(25\) 3.25252 2.36309i 0.650503 0.472618i
\(26\) 7.20151 + 5.23221i 1.41233 + 1.02612i
\(27\) 0 0
\(28\) 5.41361 + 16.6614i 1.02308 + 3.14870i
\(29\) −8.43168 6.12597i −1.56572 1.13756i −0.931112 0.364733i \(-0.881160\pi\)
−0.634611 0.772832i \(-0.718840\pi\)
\(30\) 0 0
\(31\) −0.521582 + 1.60526i −0.0936788 + 0.288314i −0.986907 0.161290i \(-0.948435\pi\)
0.893228 + 0.449603i \(0.148435\pi\)
\(32\) −0.530785 −0.0938305
\(33\) 0 0
\(34\) 6.49848 1.11448
\(35\) −1.32198 + 4.06865i −0.223456 + 0.687727i
\(36\) 0 0
\(37\) −2.61803 1.90211i −0.430402 0.312705i 0.351408 0.936223i \(-0.385703\pi\)
−0.781810 + 0.623517i \(0.785703\pi\)
\(38\) 2.90977 + 8.95537i 0.472028 + 1.45275i
\(39\) 0 0
\(40\) −4.04508 2.93893i −0.639584 0.464685i
\(41\) −9.63335 + 6.99904i −1.50448 + 1.09307i −0.535921 + 0.844268i \(0.680035\pi\)
−0.968555 + 0.248798i \(0.919965\pi\)
\(42\) 0 0
\(43\) −2.12307 −0.323764 −0.161882 0.986810i \(-0.551756\pi\)
−0.161882 + 0.986810i \(0.551756\pi\)
\(44\) −4.88477 12.5241i −0.736406 1.88809i
\(45\) 0 0
\(46\) 2.62307 8.07297i 0.386750 1.19029i
\(47\) 3.47861 2.52736i 0.507407 0.368653i −0.304432 0.952534i \(-0.598467\pi\)
0.811839 + 0.583881i \(0.198467\pi\)
\(48\) 0 0
\(49\) 3.60973 + 11.1096i 0.515675 + 1.58709i
\(50\) 3.05659 + 9.40723i 0.432267 + 1.33038i
\(51\) 0 0
\(52\) −11.8640 + 8.61970i −1.64524 + 1.19534i
\(53\) 2.93021 9.01826i 0.402496 1.23875i −0.520473 0.853878i \(-0.674244\pi\)
0.922968 0.384876i \(-0.125756\pi\)
\(54\) 0 0
\(55\) 0.832623 3.17539i 0.112271 0.428170i
\(56\) −21.8340 −2.91770
\(57\) 0 0
\(58\) 20.7447 15.0719i 2.72391 1.97904i
\(59\) 5.23607 + 3.80423i 0.681679 + 0.495269i 0.873914 0.486080i \(-0.161574\pi\)
−0.192235 + 0.981349i \(0.561574\pi\)
\(60\) 0 0
\(61\) −1.48656 4.57516i −0.190334 0.585789i 0.809665 0.586892i \(-0.199649\pi\)
−0.999999 + 0.00110319i \(0.999649\pi\)
\(62\) −3.35963 2.44091i −0.426673 0.309996i
\(63\) 0 0
\(64\) −2.26771 + 6.97930i −0.283464 + 0.872413i
\(65\) −3.58107 −0.444177
\(66\) 0 0
\(67\) 0.854102 0.104345 0.0521726 0.998638i \(-0.483385\pi\)
0.0521726 + 0.998638i \(0.483385\pi\)
\(68\) −3.30828 + 10.1818i −0.401187 + 1.23473i
\(69\) 0 0
\(70\) −8.51520 6.18665i −1.01776 0.739446i
\(71\) 1.16751 + 3.59324i 0.138558 + 0.426439i 0.996127 0.0879314i \(-0.0280256\pi\)
−0.857568 + 0.514371i \(0.828026\pi\)
\(72\) 0 0
\(73\) −9.22952 6.70564i −1.08023 0.784835i −0.102510 0.994732i \(-0.532687\pi\)
−0.977724 + 0.209897i \(0.932687\pi\)
\(74\) 6.44123 4.67983i 0.748778 0.544019i
\(75\) 0 0
\(76\) −15.5126 −1.77942
\(77\) −5.20891 13.3552i −0.593610 1.52197i
\(78\) 0 0
\(79\) 1.89841 5.84272i 0.213588 0.657357i −0.785663 0.618655i \(-0.787678\pi\)
0.999251 0.0387017i \(-0.0123222\pi\)
\(80\) 3.46100 2.51456i 0.386951 0.281137i
\(81\) 0 0
\(82\) −9.05306 27.8625i −0.999743 3.07689i
\(83\) −1.03831 3.19558i −0.113969 0.350761i 0.877762 0.479098i \(-0.159036\pi\)
−0.991731 + 0.128337i \(0.959036\pi\)
\(84\) 0 0
\(85\) −2.11503 + 1.53666i −0.229407 + 0.166674i
\(86\) 1.61413 4.96779i 0.174056 0.535690i
\(87\) 0 0
\(88\) 16.7264 0.966542i 1.78304 0.103034i
\(89\) 13.2605 1.40561 0.702806 0.711381i \(-0.251930\pi\)
0.702806 + 0.711381i \(0.251930\pi\)
\(90\) 0 0
\(91\) −12.6513 + 9.19169i −1.32621 + 0.963550i
\(92\) 11.3134 + 8.21964i 1.17950 + 0.856957i
\(93\) 0 0
\(94\) 3.26907 + 10.0612i 0.337178 + 1.03773i
\(95\) −3.06465 2.22660i −0.314427 0.228444i
\(96\) 0 0
\(97\) −0.114759 + 0.353191i −0.0116520 + 0.0358612i −0.956713 0.291031i \(-0.906002\pi\)
0.945061 + 0.326893i \(0.106002\pi\)
\(98\) −28.7399 −2.90317
\(99\) 0 0
\(100\) −16.2953 −1.62953
\(101\) −4.01546 + 12.3583i −0.399553 + 1.22970i 0.525805 + 0.850605i \(0.323764\pi\)
−0.925358 + 0.379094i \(0.876236\pi\)
\(102\) 0 0
\(103\) 9.54968 + 6.93825i 0.940958 + 0.683646i 0.948651 0.316324i \(-0.102449\pi\)
−0.00769290 + 0.999970i \(0.502449\pi\)
\(104\) −5.64788 17.3824i −0.553820 1.70448i
\(105\) 0 0
\(106\) 18.8742 + 13.7129i 1.83322 + 1.33191i
\(107\) −3.82493 + 2.77898i −0.369770 + 0.268654i −0.757116 0.653281i \(-0.773392\pi\)
0.387345 + 0.921935i \(0.373392\pi\)
\(108\) 0 0
\(109\) 16.1864 1.55037 0.775186 0.631733i \(-0.217656\pi\)
0.775186 + 0.631733i \(0.217656\pi\)
\(110\) 6.79711 + 4.36246i 0.648079 + 0.415945i
\(111\) 0 0
\(112\) 5.77285 17.7670i 0.545483 1.67882i
\(113\) 0.687408 0.499431i 0.0646659 0.0469825i −0.554983 0.831862i \(-0.687275\pi\)
0.619649 + 0.784879i \(0.287275\pi\)
\(114\) 0 0
\(115\) 1.05525 + 3.24773i 0.0984026 + 0.302852i
\(116\) 13.0539 + 40.1757i 1.21202 + 3.73022i
\(117\) 0 0
\(118\) −12.8825 + 9.35966i −1.18593 + 0.861627i
\(119\) −3.52781 + 10.8575i −0.323393 + 0.995302i
\(120\) 0 0
\(121\) 4.58160 + 10.0004i 0.416509 + 0.909132i
\(122\) 11.8357 1.07155
\(123\) 0 0
\(124\) 5.53475 4.02123i 0.497036 0.361117i
\(125\) −7.22304 5.24784i −0.646048 0.469381i
\(126\) 0 0
\(127\) 3.60148 + 11.0842i 0.319580 + 0.983566i 0.973828 + 0.227286i \(0.0729853\pi\)
−0.654248 + 0.756280i \(0.727015\pi\)
\(128\) −15.4657 11.2365i −1.36699 0.993174i
\(129\) 0 0
\(130\) 2.72263 8.37939i 0.238790 0.734921i
\(131\) 0.242802 0.0212137 0.0106068 0.999944i \(-0.496624\pi\)
0.0106068 + 0.999944i \(0.496624\pi\)
\(132\) 0 0
\(133\) −16.5420 −1.43437
\(134\) −0.649360 + 1.99852i −0.0560962 + 0.172646i
\(135\) 0 0
\(136\) −10.7946 7.84273i −0.925629 0.672509i
\(137\) −0.140507 0.432435i −0.0120043 0.0369454i 0.944875 0.327431i \(-0.106183\pi\)
−0.956879 + 0.290486i \(0.906183\pi\)
\(138\) 0 0
\(139\) 14.4337 + 10.4867i 1.22425 + 0.889468i 0.996446 0.0842390i \(-0.0268459\pi\)
0.227803 + 0.973707i \(0.426846\pi\)
\(140\) 14.0282 10.1921i 1.18560 0.861389i
\(141\) 0 0
\(142\) −9.29551 −0.780062
\(143\) 9.28487 7.60152i 0.776440 0.635671i
\(144\) 0 0
\(145\) −3.18771 + 9.81076i −0.264725 + 0.814739i
\(146\) 22.7077 16.4981i 1.87930 1.36539i
\(147\) 0 0
\(148\) 4.05323 + 12.4745i 0.333173 + 1.02540i
\(149\) −4.92523 15.1583i −0.403491 1.24182i −0.922149 0.386835i \(-0.873568\pi\)
0.518658 0.854982i \(-0.326432\pi\)
\(150\) 0 0
\(151\) −4.89743 + 3.55819i −0.398547 + 0.289562i −0.768949 0.639310i \(-0.779220\pi\)
0.370402 + 0.928872i \(0.379220\pi\)
\(152\) 5.97443 18.3874i 0.484590 1.49141i
\(153\) 0 0
\(154\) 35.2103 2.03464i 2.83733 0.163956i
\(155\) 1.67063 0.134188
\(156\) 0 0
\(157\) −6.05296 + 4.39773i −0.483079 + 0.350977i −0.802516 0.596630i \(-0.796506\pi\)
0.319438 + 0.947607i \(0.396506\pi\)
\(158\) 12.2281 + 8.88425i 0.972817 + 0.706793i
\(159\) 0 0
\(160\) 0.162346 + 0.499649i 0.0128346 + 0.0395007i
\(161\) 12.0641 + 8.76508i 0.950784 + 0.690785i
\(162\) 0 0
\(163\) 4.31902 13.2926i 0.338292 1.04115i −0.626786 0.779191i \(-0.715630\pi\)
0.965078 0.261963i \(-0.0843699\pi\)
\(164\) 48.2637 3.76876
\(165\) 0 0
\(166\) 8.26679 0.641628
\(167\) −1.97499 + 6.07840i −0.152829 + 0.470361i −0.997935 0.0642395i \(-0.979538\pi\)
0.845105 + 0.534600i \(0.179538\pi\)
\(168\) 0 0
\(169\) −0.0729490 0.0530006i −0.00561146 0.00407697i
\(170\) −1.98762 6.11727i −0.152444 0.469174i
\(171\) 0 0
\(172\) 6.96181 + 5.05805i 0.530833 + 0.385673i
\(173\) 6.34726 4.61155i 0.482573 0.350610i −0.319748 0.947503i \(-0.603598\pi\)
0.802321 + 0.596893i \(0.203598\pi\)
\(174\) 0 0
\(175\) −17.3766 −1.31355
\(176\) −3.63590 + 13.8663i −0.274066 + 1.04521i
\(177\) 0 0
\(178\) −10.0818 + 31.0285i −0.755660 + 2.32568i
\(179\) −3.94392 + 2.86542i −0.294782 + 0.214172i −0.725339 0.688392i \(-0.758317\pi\)
0.430557 + 0.902563i \(0.358317\pi\)
\(180\) 0 0
\(181\) 2.79558 + 8.60390i 0.207794 + 0.639523i 0.999587 + 0.0287340i \(0.00914758\pi\)
−0.791794 + 0.610789i \(0.790852\pi\)
\(182\) −11.8892 36.5912i −0.881285 2.71232i
\(183\) 0 0
\(184\) −14.1001 + 10.2443i −1.03947 + 0.755220i
\(185\) −0.989783 + 3.04624i −0.0727703 + 0.223964i
\(186\) 0 0
\(187\) 2.22191 8.47375i 0.162482 0.619662i
\(188\) −17.4280 −1.27107
\(189\) 0 0
\(190\) 7.54005 5.47817i 0.547013 0.397428i
\(191\) −15.1833 11.0313i −1.09863 0.798200i −0.117793 0.993038i \(-0.537582\pi\)
−0.980835 + 0.194838i \(0.937582\pi\)
\(192\) 0 0
\(193\) −5.34678 16.4557i −0.384870 1.18451i −0.936575 0.350468i \(-0.886023\pi\)
0.551705 0.834039i \(-0.313977\pi\)
\(194\) −0.739188 0.537051i −0.0530706 0.0385580i
\(195\) 0 0
\(196\) 14.6310 45.0297i 1.04507 3.21641i
\(197\) 6.06800 0.432327 0.216164 0.976357i \(-0.430646\pi\)
0.216164 + 0.976357i \(0.430646\pi\)
\(198\) 0 0
\(199\) −10.1108 −0.716738 −0.358369 0.933580i \(-0.616667\pi\)
−0.358369 + 0.933580i \(0.616667\pi\)
\(200\) 6.27588 19.3152i 0.443771 1.36579i
\(201\) 0 0
\(202\) −25.8645 18.7917i −1.81982 1.32218i
\(203\) 13.9201 + 42.8417i 0.977000 + 3.00690i
\(204\) 0 0
\(205\) 9.53492 + 6.92752i 0.665948 + 0.483839i
\(206\) −23.4954 + 17.0704i −1.63700 + 1.18935i
\(207\) 0 0
\(208\) 15.6378 1.08429
\(209\) 12.6723 0.732275i 0.876562 0.0506525i
\(210\) 0 0
\(211\) 4.55535 14.0199i 0.313603 0.965172i −0.662722 0.748865i \(-0.730599\pi\)
0.976325 0.216307i \(-0.0694011\pi\)
\(212\) −31.0939 + 22.5910i −2.13554 + 1.55156i
\(213\) 0 0
\(214\) −3.59453 11.0628i −0.245717 0.756239i
\(215\) 0.649360 + 1.99852i 0.0442860 + 0.136298i
\(216\) 0 0
\(217\) 5.90203 4.28807i 0.400656 0.291093i
\(218\) −12.3062 + 37.8747i −0.833483 + 2.56520i
\(219\) 0 0
\(220\) −10.2954 + 8.42885i −0.694116 + 0.568273i
\(221\) −9.55633 −0.642828
\(222\) 0 0
\(223\) −0.496725 + 0.360892i −0.0332632 + 0.0241671i −0.604293 0.796762i \(-0.706544\pi\)
0.571029 + 0.820930i \(0.306544\pi\)
\(224\) 1.85601 + 1.34847i 0.124010 + 0.0900985i
\(225\) 0 0
\(226\) 0.646000 + 1.98818i 0.0429713 + 0.132252i
\(227\) 9.39297 + 6.82439i 0.623433 + 0.452951i 0.854119 0.520078i \(-0.174097\pi\)
−0.230686 + 0.973028i \(0.574097\pi\)
\(228\) 0 0
\(229\) 0.251367 0.773628i 0.0166108 0.0511228i −0.942408 0.334467i \(-0.891444\pi\)
0.959018 + 0.283344i \(0.0914438\pi\)
\(230\) −8.40169 −0.553991
\(231\) 0 0
\(232\) −52.6486 −3.45655
\(233\) 5.33097 16.4070i 0.349243 1.07486i −0.610029 0.792379i \(-0.708842\pi\)
0.959273 0.282482i \(-0.0911577\pi\)
\(234\) 0 0
\(235\) −3.44307 2.50153i −0.224601 0.163182i
\(236\) −8.10646 24.9491i −0.527686 1.62405i
\(237\) 0 0
\(238\) −22.7234 16.5095i −1.47294 1.07015i
\(239\) −0.161603 + 0.117411i −0.0104532 + 0.00759470i −0.593000 0.805203i \(-0.702056\pi\)
0.582546 + 0.812797i \(0.302056\pi\)
\(240\) 0 0
\(241\) 14.8309 0.955345 0.477672 0.878538i \(-0.341481\pi\)
0.477672 + 0.878538i \(0.341481\pi\)
\(242\) −26.8835 + 3.11736i −1.72814 + 0.200391i
\(243\) 0 0
\(244\) −6.02536 + 18.5442i −0.385734 + 1.18717i
\(245\) 9.35383 6.79596i 0.597594 0.434178i
\(246\) 0 0
\(247\) −4.27896 13.1693i −0.272264 0.837942i
\(248\) 2.63483 + 8.10917i 0.167312 + 0.514933i
\(249\) 0 0
\(250\) 17.7711 12.9114i 1.12394 0.816591i
\(251\) −2.63483 + 8.10917i −0.166309 + 0.511846i −0.999130 0.0416955i \(-0.986724\pi\)
0.832821 + 0.553542i \(0.186724\pi\)
\(252\) 0 0
\(253\) −9.62996 6.18062i −0.605430 0.388572i
\(254\) −28.6743 −1.79918
\(255\) 0 0
\(256\) 26.1768 19.0186i 1.63605 1.18866i
\(257\) −10.5161 7.64039i −0.655976 0.476595i 0.209325 0.977846i \(-0.432873\pi\)
−0.865302 + 0.501251i \(0.832873\pi\)
\(258\) 0 0
\(259\) 4.32219 + 13.3023i 0.268568 + 0.826567i
\(260\) 11.7428 + 8.53163i 0.728256 + 0.529109i
\(261\) 0 0
\(262\) −0.184598 + 0.568135i −0.0114045 + 0.0350995i
\(263\) 14.8529 0.915868 0.457934 0.888986i \(-0.348590\pi\)
0.457934 + 0.888986i \(0.348590\pi\)
\(264\) 0 0
\(265\) −9.38548 −0.576545
\(266\) 12.5766 38.7068i 0.771121 2.37327i
\(267\) 0 0
\(268\) −2.80071 2.03484i −0.171081 0.124297i
\(269\) 1.17789 + 3.62517i 0.0718172 + 0.221031i 0.980522 0.196408i \(-0.0629278\pi\)
−0.908705 + 0.417439i \(0.862928\pi\)
\(270\) 0 0
\(271\) 11.1948 + 8.13347i 0.680033 + 0.494073i 0.873369 0.487060i \(-0.161931\pi\)
−0.193335 + 0.981133i \(0.561931\pi\)
\(272\) 9.23591 6.71028i 0.560010 0.406871i
\(273\) 0 0
\(274\) 1.11869 0.0675823
\(275\) 13.3117 0.769223i 0.802727 0.0463859i
\(276\) 0 0
\(277\) 0.759571 2.33772i 0.0456382 0.140460i −0.925641 0.378403i \(-0.876473\pi\)
0.971279 + 0.237943i \(0.0764732\pi\)
\(278\) −35.5116 + 25.8007i −2.12984 + 1.54742i
\(279\) 0 0
\(280\) 6.67815 + 20.5532i 0.399096 + 1.22829i
\(281\) −6.15581 18.9456i −0.367225 1.13020i −0.948576 0.316549i \(-0.897476\pi\)
0.581352 0.813652i \(-0.302524\pi\)
\(282\) 0 0
\(283\) −5.81564 + 4.22531i −0.345704 + 0.251169i −0.747065 0.664752i \(-0.768537\pi\)
0.401361 + 0.915920i \(0.368537\pi\)
\(284\) 4.73220 14.5642i 0.280804 0.864227i
\(285\) 0 0
\(286\) 10.7278 + 27.5051i 0.634346 + 1.62641i
\(287\) 51.4664 3.03796
\(288\) 0 0
\(289\) 8.10919 5.89167i 0.477011 0.346569i
\(290\) −20.5328 14.9179i −1.20572 0.876010i
\(291\) 0 0
\(292\) 14.2891 + 43.9773i 0.836206 + 2.57358i
\(293\) −13.8033 10.0287i −0.806396 0.585881i 0.106387 0.994325i \(-0.466072\pi\)
−0.912784 + 0.408444i \(0.866072\pi\)
\(294\) 0 0
\(295\) 1.97957 6.09248i 0.115255 0.354718i
\(296\) −16.3474 −0.950172
\(297\) 0 0
\(298\) 39.2137 2.27159
\(299\) −3.85734 + 11.8717i −0.223076 + 0.686557i
\(300\) 0 0
\(301\) 7.42378 + 5.39369i 0.427899 + 0.310887i
\(302\) −4.60242 14.1648i −0.264840 0.815093i
\(303\) 0 0
\(304\) 13.3827 + 9.72313i 0.767553 + 0.557660i
\(305\) −3.85210 + 2.79871i −0.220571 + 0.160254i
\(306\) 0 0
\(307\) 7.48842 0.427387 0.213693 0.976901i \(-0.431451\pi\)
0.213693 + 0.976901i \(0.431451\pi\)
\(308\) −14.7371 + 56.2033i −0.839726 + 3.20248i
\(309\) 0 0
\(310\) −1.27015 + 3.90912i −0.0721397 + 0.222023i
\(311\) 8.51155 6.18400i 0.482645 0.350662i −0.319704 0.947518i \(-0.603583\pi\)
0.802349 + 0.596855i \(0.203583\pi\)
\(312\) 0 0
\(313\) −3.22449 9.92395i −0.182259 0.560935i 0.817632 0.575742i \(-0.195287\pi\)
−0.999890 + 0.0148070i \(0.995287\pi\)
\(314\) −5.68834 17.5069i −0.321012 0.987973i
\(315\) 0 0
\(316\) −20.1450 + 14.6362i −1.13324 + 0.823350i
\(317\) −3.95173 + 12.1622i −0.221951 + 0.683096i 0.776635 + 0.629950i \(0.216925\pi\)
−0.998587 + 0.0531456i \(0.983075\pi\)
\(318\) 0 0
\(319\) −12.5603 32.2035i −0.703241 1.80305i
\(320\) 7.26349 0.406042
\(321\) 0 0
\(322\) −29.6817 + 21.5650i −1.65409 + 1.20177i
\(323\) −8.17824 5.94184i −0.455049 0.330613i
\(324\) 0 0
\(325\) −4.49487 13.8338i −0.249330 0.767360i
\(326\) 27.8198 + 20.2122i 1.54079 + 1.11945i
\(327\) 0 0
\(328\) −18.5880 + 57.2079i −1.02635 + 3.15878i
\(329\) −18.5845 −1.02460
\(330\) 0 0
\(331\) 16.3849 0.900598 0.450299 0.892878i \(-0.351317\pi\)
0.450299 + 0.892878i \(0.351317\pi\)
\(332\) −4.20849 + 12.9524i −0.230971 + 0.710856i
\(333\) 0 0
\(334\) −12.7214 9.24262i −0.696083 0.505734i
\(335\) −0.261235 0.804000i −0.0142728 0.0439272i
\(336\) 0 0
\(337\) −23.5160 17.0854i −1.28100 0.930698i −0.281414 0.959586i \(-0.590803\pi\)
−0.999583 + 0.0288881i \(0.990803\pi\)
\(338\) 0.179479 0.130399i 0.00976235 0.00709277i
\(339\) 0 0
\(340\) 10.5964 0.574671
\(341\) −4.33155 + 3.54624i −0.234566 + 0.192039i
\(342\) 0 0
\(343\) 6.25252 19.2433i 0.337604 1.03904i
\(344\) −8.67663 + 6.30394i −0.467813 + 0.339886i
\(345\) 0 0
\(346\) 5.96491 + 18.3581i 0.320676 + 0.986939i
\(347\) 6.66940 + 20.5263i 0.358032 + 1.10191i 0.954231 + 0.299072i \(0.0966771\pi\)
−0.596199 + 0.802837i \(0.703323\pi\)
\(348\) 0 0
\(349\) −19.5785 + 14.2246i −1.04801 + 0.761426i −0.971833 0.235669i \(-0.924272\pi\)
−0.0761789 + 0.997094i \(0.524272\pi\)
\(350\) 13.2112 40.6598i 0.706167 2.17336i
\(351\) 0 0
\(352\) −1.48153 0.950862i −0.0789657 0.0506811i
\(353\) 20.9800 1.11666 0.558328 0.829621i \(-0.311443\pi\)
0.558328 + 0.829621i \(0.311443\pi\)
\(354\) 0 0
\(355\) 3.02536 2.19805i 0.160570 0.116661i
\(356\) −43.4830 31.5922i −2.30459 1.67438i
\(357\) 0 0
\(358\) −3.70635 11.4070i −0.195886 0.602876i
\(359\) 12.6882 + 9.21850i 0.669657 + 0.486534i 0.869910 0.493210i \(-0.164177\pi\)
−0.200254 + 0.979744i \(0.564177\pi\)
\(360\) 0 0
\(361\) −1.34496 + 4.13936i −0.0707873 + 0.217861i
\(362\) −22.2578 −1.16984
\(363\) 0 0
\(364\) 63.3837 3.32221
\(365\) −3.48934 + 10.7391i −0.182640 + 0.562110i
\(366\) 0 0
\(367\) 6.62952 + 4.81663i 0.346058 + 0.251426i 0.747214 0.664584i \(-0.231391\pi\)
−0.401155 + 0.916010i \(0.631391\pi\)
\(368\) −4.60807 14.1822i −0.240212 0.739298i
\(369\) 0 0
\(370\) −6.37542 4.63201i −0.331442 0.240807i
\(371\) −33.1572 + 24.0901i −1.72144 + 1.25070i
\(372\) 0 0
\(373\) 30.8172 1.59565 0.797826 0.602888i \(-0.205983\pi\)
0.797826 + 0.602888i \(0.205983\pi\)
\(374\) 18.1386 + 11.6415i 0.937923 + 0.601970i
\(375\) 0 0
\(376\) 6.71213 20.6578i 0.346152 1.06535i
\(377\) −30.5061 + 22.1640i −1.57114 + 1.14150i
\(378\) 0 0
\(379\) 6.12378 + 18.8470i 0.314557 + 0.968108i 0.975936 + 0.218056i \(0.0699715\pi\)
−0.661379 + 0.750052i \(0.730029\pi\)
\(380\) 4.74468 + 14.6026i 0.243397 + 0.749098i
\(381\) 0 0
\(382\) 37.3560 27.1407i 1.91130 1.38864i
\(383\) 7.31619 22.5169i 0.373840 1.15056i −0.570418 0.821354i \(-0.693219\pi\)
0.944258 0.329206i \(-0.106781\pi\)
\(384\) 0 0
\(385\) −10.9786 + 8.98817i −0.559521 + 0.458080i
\(386\) 42.5700 2.16675
\(387\) 0 0
\(388\) 1.21776 0.884756i 0.0618225 0.0449167i
\(389\) 6.89001 + 5.00589i 0.349338 + 0.253809i 0.748591 0.663032i \(-0.230731\pi\)
−0.399254 + 0.916841i \(0.630731\pi\)
\(390\) 0 0
\(391\) 2.81601 + 8.66679i 0.142412 + 0.438298i
\(392\) 47.7397 + 34.6849i 2.41122 + 1.75185i
\(393\) 0 0
\(394\) −4.61341 + 14.1986i −0.232420 + 0.715315i
\(395\) −6.08063 −0.305949
\(396\) 0 0
\(397\) −3.78373 −0.189900 −0.0949499 0.995482i \(-0.530269\pi\)
−0.0949499 + 0.995482i \(0.530269\pi\)
\(398\) 7.68710 23.6585i 0.385320 1.18589i
\(399\) 0 0
\(400\) 14.0580 + 10.2137i 0.702899 + 0.510686i
\(401\) −5.42428 16.6942i −0.270876 0.833670i −0.990281 0.139079i \(-0.955586\pi\)
0.719405 0.694590i \(-0.244414\pi\)
\(402\) 0 0
\(403\) 4.94049 + 3.58948i 0.246103 + 0.178805i
\(404\) 42.6100 30.9580i 2.11993 1.54022i
\(405\) 0 0
\(406\) −110.829 −5.50035
\(407\) −3.89996 9.99919i −0.193314 0.495641i
\(408\) 0 0
\(409\) 8.74225 26.9059i 0.432276 1.33041i −0.463576 0.886057i \(-0.653434\pi\)
0.895852 0.444352i \(-0.146566\pi\)
\(410\) −23.4591 + 17.0440i −1.15856 + 0.841743i
\(411\) 0 0
\(412\) −14.7848 45.5028i −0.728393 2.24176i
\(413\) −8.64439 26.6047i −0.425363 1.30913i
\(414\) 0 0
\(415\) −2.69055 + 1.95480i −0.132074 + 0.0959573i
\(416\) −0.593436 + 1.82641i −0.0290956 + 0.0895470i
\(417\) 0 0
\(418\) −7.92110 + 30.2089i −0.387434 + 1.47756i
\(419\) 32.2357 1.57482 0.787409 0.616430i \(-0.211422\pi\)
0.787409 + 0.616430i \(0.211422\pi\)
\(420\) 0 0
\(421\) 23.0100 16.7177i 1.12144 0.814772i 0.137011 0.990570i \(-0.456250\pi\)
0.984426 + 0.175798i \(0.0562504\pi\)
\(422\) 29.3421 + 21.3183i 1.42835 + 1.03776i
\(423\) 0 0
\(424\) −14.8023 45.5568i −0.718863 2.21243i
\(425\) −8.59088 6.24164i −0.416719 0.302764i
\(426\) 0 0
\(427\) −6.42519 + 19.7747i −0.310937 + 0.956965i
\(428\) 19.1632 0.926286
\(429\) 0 0
\(430\) −5.17007 −0.249323
\(431\) 8.27921 25.4808i 0.398796 1.22737i −0.527170 0.849760i \(-0.676747\pi\)
0.925966 0.377607i \(-0.123253\pi\)
\(432\) 0 0
\(433\) 7.60672 + 5.52661i 0.365556 + 0.265592i 0.755366 0.655304i \(-0.227459\pi\)
−0.389810 + 0.920895i \(0.627459\pi\)
\(434\) 5.54651 + 17.0704i 0.266241 + 0.819405i
\(435\) 0 0
\(436\) −53.0771 38.5628i −2.54193 1.84682i
\(437\) −10.6825 + 7.76132i −0.511015 + 0.371274i
\(438\) 0 0
\(439\) −17.8962 −0.854139 −0.427069 0.904219i \(-0.640454\pi\)
−0.427069 + 0.904219i \(0.640454\pi\)
\(440\) −6.02578 15.4496i −0.287268 0.736531i
\(441\) 0 0
\(442\) 7.26552 22.3610i 0.345586 1.06360i
\(443\) −14.8708 + 10.8042i −0.706531 + 0.513325i −0.882053 0.471151i \(-0.843839\pi\)
0.175522 + 0.984476i \(0.443839\pi\)
\(444\) 0 0
\(445\) −4.05586 12.4826i −0.192266 0.591734i
\(446\) −0.466803 1.43667i −0.0221038 0.0680285i
\(447\) 0 0
\(448\) 25.6606 18.6435i 1.21235 0.880824i
\(449\) −1.85302 + 5.70301i −0.0874494 + 0.269142i −0.985212 0.171337i \(-0.945191\pi\)
0.897763 + 0.440479i \(0.145191\pi\)
\(450\) 0 0
\(451\) −39.4268 + 2.27830i −1.85654 + 0.107281i
\(452\) −3.44396 −0.161990
\(453\) 0 0
\(454\) −23.1098 + 16.7903i −1.08460 + 0.788006i
\(455\) 12.5220 + 9.09777i 0.587041 + 0.426510i
\(456\) 0 0
\(457\) 7.89068 + 24.2850i 0.369110 + 1.13600i 0.947367 + 0.320150i \(0.103733\pi\)
−0.578257 + 0.815855i \(0.696267\pi\)
\(458\) 1.61911 + 1.17635i 0.0756562 + 0.0549674i
\(459\) 0 0
\(460\) 4.27717 13.1638i 0.199424 0.613764i
\(461\) 31.5683 1.47028 0.735142 0.677913i \(-0.237115\pi\)
0.735142 + 0.677913i \(0.237115\pi\)
\(462\) 0 0
\(463\) 3.76414 0.174934 0.0874671 0.996167i \(-0.472123\pi\)
0.0874671 + 0.996167i \(0.472123\pi\)
\(464\) 13.9201 42.8417i 0.646225 1.98888i
\(465\) 0 0
\(466\) 34.3380 + 24.9480i 1.59068 + 1.15569i
\(467\) −1.80825 5.56521i −0.0836756 0.257527i 0.900462 0.434935i \(-0.143229\pi\)
−0.984137 + 0.177408i \(0.943229\pi\)
\(468\) 0 0
\(469\) −2.98656 2.16986i −0.137907 0.100195i
\(470\) 8.47108 6.15460i 0.390742 0.283890i
\(471\) 0 0
\(472\) 32.6948 1.50490
\(473\) −5.92590 3.80331i −0.272473 0.174876i
\(474\) 0 0
\(475\) 4.75475 14.6336i 0.218163 0.671436i
\(476\) 37.4352 27.1983i 1.71584 1.24663i
\(477\) 0 0
\(478\) −0.151868 0.467402i −0.00694629 0.0213785i
\(479\) −7.93853 24.4323i −0.362721 1.11634i −0.951396 0.307970i \(-0.900350\pi\)
0.588675 0.808370i \(-0.299650\pi\)
\(480\) 0 0
\(481\) −9.47214 + 6.88191i −0.431892 + 0.313788i
\(482\) −11.2757 + 34.7031i −0.513595 + 1.58068i
\(483\) 0 0
\(484\) 8.80169 43.7081i 0.400077 1.98673i
\(485\) 0.367573 0.0166906
\(486\) 0 0
\(487\) 4.29919 3.12355i 0.194815 0.141541i −0.486102 0.873902i \(-0.661582\pi\)
0.680917 + 0.732361i \(0.261582\pi\)
\(488\) −19.6602 14.2840i −0.889975 0.646605i
\(489\) 0 0
\(490\) 8.79038 + 27.0540i 0.397109 + 1.22218i
\(491\) −1.99393 1.44868i −0.0899850 0.0653779i 0.541883 0.840454i \(-0.317712\pi\)
−0.631868 + 0.775076i \(0.717712\pi\)
\(492\) 0 0
\(493\) −8.50662 + 26.1807i −0.383119 + 1.17912i
\(494\) 34.0682 1.53280
\(495\) 0 0
\(496\) −7.29531 −0.327569
\(497\) 5.04622 15.5307i 0.226354 0.696646i
\(498\) 0 0
\(499\) −18.0431 13.1091i −0.807722 0.586844i 0.105448 0.994425i \(-0.466372\pi\)
−0.913169 + 0.407581i \(0.866372\pi\)
\(500\) 11.1827 + 34.4167i 0.500104 + 1.53916i
\(501\) 0 0
\(502\) −16.9715 12.3305i −0.757477 0.550339i
\(503\) −21.0129 + 15.2667i −0.936917 + 0.680710i −0.947677 0.319232i \(-0.896575\pi\)
0.0107594 + 0.999942i \(0.496575\pi\)
\(504\) 0 0
\(505\) 12.8615 0.572331
\(506\) 21.7836 17.8342i 0.968400 0.792829i
\(507\) 0 0
\(508\) 14.5976 44.9269i 0.647665 1.99331i
\(509\) 22.5506 16.3840i 0.999538 0.726207i 0.0375492 0.999295i \(-0.488045\pi\)
0.961989 + 0.273088i \(0.0880449\pi\)
\(510\) 0 0
\(511\) 15.2373 + 46.8955i 0.674058 + 2.07454i
\(512\) 12.7852 + 39.3489i 0.565033 + 1.73899i
\(513\) 0 0
\(514\) 25.8731 18.7979i 1.14121 0.829139i
\(515\) 3.61038 11.1116i 0.159093 0.489637i
\(516\) 0 0
\(517\) 14.2371 0.822694i 0.626145 0.0361820i
\(518\) −34.4124 −1.51199
\(519\) 0 0
\(520\) −14.6353 + 10.6331i −0.641798 + 0.466294i
\(521\) −20.9287 15.2056i −0.916902 0.666168i 0.0258491 0.999666i \(-0.491771\pi\)
−0.942751 + 0.333498i \(0.891771\pi\)
\(522\) 0 0
\(523\) −8.42503 25.9296i −0.368401 1.13382i −0.947824 0.318794i \(-0.896722\pi\)
0.579423 0.815027i \(-0.303278\pi\)
\(524\) −0.796178 0.578457i −0.0347812 0.0252700i
\(525\) 0 0
\(526\) −11.2924 + 34.7544i −0.492372 + 1.51537i
\(527\) 4.45819 0.194202
\(528\) 0 0
\(529\) −11.0967 −0.482466
\(530\) 7.13563 21.9612i 0.309952 0.953934i
\(531\) 0 0
\(532\) 54.2433 + 39.4100i 2.35174 + 1.70864i
\(533\) 13.3130 + 40.9731i 0.576648 + 1.77474i
\(534\) 0 0
\(535\) 3.78585 + 2.75058i 0.163677 + 0.118918i
\(536\) 3.49058 2.53605i 0.150770 0.109541i
\(537\) 0 0
\(538\) −9.37812 −0.404320
\(539\) −9.82654 + 37.4757i −0.423259 + 1.61419i
\(540\) 0 0
\(541\) −7.22580 + 22.2387i −0.310661 + 0.956118i 0.666842 + 0.745199i \(0.267646\pi\)
−0.977504 + 0.210919i \(0.932354\pi\)
\(542\) −27.5428 + 20.0110i −1.18307 + 0.859547i
\(543\) 0 0
\(544\) 0.433231 + 1.33335i 0.0185746 + 0.0571668i
\(545\) −4.95075 15.2368i −0.212067 0.652675i
\(546\) 0 0
\(547\) −12.3642 + 8.98309i −0.528654 + 0.384089i −0.819854 0.572573i \(-0.805945\pi\)
0.291200 + 0.956662i \(0.405945\pi\)
\(548\) −0.569506 + 1.75276i −0.0243281 + 0.0748741i
\(549\) 0 0
\(550\) −8.32077 + 31.7331i −0.354799 + 1.35310i
\(551\) −39.8878 −1.69928
\(552\) 0 0
\(553\) −21.4818 + 15.6074i −0.913498 + 0.663695i
\(554\) 4.89257 + 3.55466i 0.207866 + 0.151023i
\(555\) 0 0
\(556\) −22.3461 68.7743i −0.947687 2.91668i
\(557\) −5.85761 4.25580i −0.248195 0.180324i 0.456732 0.889605i \(-0.349020\pi\)
−0.704926 + 0.709280i \(0.749020\pi\)
\(558\) 0 0
\(559\) −2.37366 + 7.30537i −0.100395 + 0.308984i
\(560\) −18.4904 −0.781364
\(561\) 0 0
\(562\) 49.0113 2.06742
\(563\) −9.74643 + 29.9964i −0.410763 + 1.26420i 0.505223 + 0.862989i \(0.331410\pi\)
−0.915986 + 0.401210i \(0.868590\pi\)
\(564\) 0 0
\(565\) −0.680384 0.494328i −0.0286240 0.0207965i
\(566\) −5.46532 16.8205i −0.229725 0.707019i
\(567\) 0 0
\(568\) 15.4407 + 11.2183i 0.647879 + 0.470711i
\(569\) 9.04664 6.57277i 0.379255 0.275545i −0.381783 0.924252i \(-0.624690\pi\)
0.761038 + 0.648707i \(0.224690\pi\)
\(570\) 0 0
\(571\) 11.5906 0.485052 0.242526 0.970145i \(-0.422024\pi\)
0.242526 + 0.970145i \(0.422024\pi\)
\(572\) −48.5563 + 2.80585i −2.03024 + 0.117318i
\(573\) 0 0
\(574\) −39.1290 + 120.427i −1.63321 + 5.02652i
\(575\) −11.2215 + 8.15293i −0.467971 + 0.340001i
\(576\) 0 0
\(577\) 5.23344 + 16.1069i 0.217871 + 0.670537i 0.998937 + 0.0460895i \(0.0146760\pi\)
−0.781067 + 0.624448i \(0.785324\pi\)
\(578\) 7.62072 + 23.4541i 0.316980 + 0.975564i
\(579\) 0 0
\(580\) 33.8263 24.5763i 1.40456 1.02047i
\(581\) −4.48776 + 13.8119i −0.186184 + 0.573015i
\(582\) 0 0
\(583\) 24.3343 19.9225i 1.00783 0.825107i
\(584\) −57.6304 −2.38476
\(585\) 0 0
\(586\) 33.9606 24.6738i 1.40290 1.01927i
\(587\) 7.31900 + 5.31756i 0.302087 + 0.219479i 0.728494 0.685052i \(-0.240221\pi\)
−0.426406 + 0.904532i \(0.640221\pi\)
\(588\) 0 0
\(589\) 1.99621 + 6.14370i 0.0822523 + 0.253147i
\(590\) 12.7508 + 9.26403i 0.524944 + 0.381394i
\(591\) 0 0
\(592\) 4.32219 13.3023i 0.177641 0.546722i
\(593\) 20.4127 0.838248 0.419124 0.907929i \(-0.362337\pi\)
0.419124 + 0.907929i \(0.362337\pi\)
\(594\) 0 0
\(595\) 11.2996 0.463237
\(596\) −19.9631 + 61.4401i −0.817720 + 2.51668i
\(597\) 0 0
\(598\) −24.8460 18.0517i −1.01603 0.738189i
\(599\) −12.9855 39.9652i −0.530573 1.63293i −0.753026 0.657991i \(-0.771406\pi\)
0.222453 0.974943i \(-0.428594\pi\)
\(600\) 0 0
\(601\) 8.65252 + 6.28642i 0.352944 + 0.256429i 0.750103 0.661321i \(-0.230004\pi\)
−0.397159 + 0.917750i \(0.630004\pi\)
\(602\) −18.2649 + 13.2703i −0.744423 + 0.540855i
\(603\) 0 0
\(604\) 24.5364 0.998373
\(605\) 8.01249 7.37157i 0.325754 0.299697i
\(606\) 0 0
\(607\) −14.0910 + 43.3676i −0.571936 + 1.76024i 0.0744490 + 0.997225i \(0.476280\pi\)
−0.646385 + 0.763012i \(0.723720\pi\)
\(608\) −1.64346 + 1.19405i −0.0666513 + 0.0484250i
\(609\) 0 0
\(610\) −3.62006 11.1414i −0.146572 0.451102i
\(611\) −4.80732 14.7954i −0.194483 0.598558i
\(612\) 0 0
\(613\) −21.9790 + 15.9687i −0.887725 + 0.644970i −0.935284 0.353899i \(-0.884856\pi\)
0.0475592 + 0.998868i \(0.484856\pi\)
\(614\) −5.69332 + 17.5222i −0.229764 + 0.707140i
\(615\) 0 0
\(616\) −60.9432 39.1140i −2.45547 1.57595i
\(617\) 7.83117 0.315271 0.157636 0.987497i \(-0.449613\pi\)
0.157636 + 0.987497i \(0.449613\pi\)
\(618\) 0 0
\(619\) −30.6835 + 22.2929i −1.23327 + 0.896027i −0.997131 0.0756915i \(-0.975884\pi\)
−0.236144 + 0.971718i \(0.575884\pi\)
\(620\) −5.47820 3.98015i −0.220010 0.159847i
\(621\) 0 0
\(622\) 7.99883 + 24.6179i 0.320724 + 0.987087i
\(623\) −46.3684 33.6886i −1.85771 1.34971i
\(624\) 0 0
\(625\) 3.48099 10.7134i 0.139239 0.428535i
\(626\) 25.6727 1.02609
\(627\) 0 0
\(628\) 30.3257 1.21013
\(629\) −2.64130 + 8.12910i −0.105316 + 0.324128i
\(630\) 0 0
\(631\) 22.3432 + 16.2333i 0.889468 + 0.646237i 0.935739 0.352692i \(-0.114734\pi\)
−0.0462710 + 0.998929i \(0.514734\pi\)
\(632\) −9.59006 29.5152i −0.381472 1.17405i
\(633\) 0 0
\(634\) −25.4540 18.4934i −1.01091 0.734467i
\(635\) 9.33247 6.78044i 0.370348 0.269073i
\(636\) 0 0
\(637\) 42.2634 1.67454
\(638\) 84.9029 4.90614i 3.36134 0.194236i
\(639\) 0 0
\(640\) −5.84701 + 17.9952i −0.231123 + 0.711324i
\(641\) −3.61805 + 2.62867i −0.142904 + 0.103826i −0.656940 0.753942i \(-0.728150\pi\)
0.514036 + 0.857769i \(0.328150\pi\)
\(642\) 0 0
\(643\) −2.30885 7.10591i −0.0910522 0.280230i 0.895153 0.445760i \(-0.147067\pi\)
−0.986205 + 0.165530i \(0.947067\pi\)
\(644\) −18.6776 57.4836i −0.735999 2.26517i
\(645\) 0 0
\(646\) 20.1212 14.6189i 0.791657 0.575172i
\(647\) 3.55862 10.9523i 0.139904 0.430579i −0.856417 0.516285i \(-0.827314\pi\)
0.996320 + 0.0857057i \(0.0273145\pi\)
\(648\) 0 0
\(649\) 7.79994 + 19.9984i 0.306174 + 0.785006i
\(650\) 35.7872 1.40369
\(651\) 0 0
\(652\) −45.8312 + 33.2983i −1.79489 + 1.30406i
\(653\) 17.1013 + 12.4248i 0.669226 + 0.486221i 0.869766 0.493464i \(-0.164270\pi\)
−0.200540 + 0.979686i \(0.564270\pi\)
\(654\) 0 0
\(655\) −0.0742632 0.228559i −0.00290170 0.00893053i
\(656\) −41.6372 30.2512i −1.62566 1.18111i
\(657\) 0 0
\(658\) 14.1295 43.4862i 0.550826 1.69527i
\(659\) −27.0354 −1.05315 −0.526575 0.850129i \(-0.676524\pi\)
−0.526575 + 0.850129i \(0.676524\pi\)
\(660\) 0 0
\(661\) −26.7618 −1.04091 −0.520456 0.853888i \(-0.674238\pi\)
−0.520456 + 0.853888i \(0.674238\pi\)
\(662\) −12.4572 + 38.3393i −0.484163 + 1.49010i
\(663\) 0 0
\(664\) −13.7319 9.97683i −0.532902 0.387176i
\(665\) 5.05952 + 15.5716i 0.196200 + 0.603841i
\(666\) 0 0
\(667\) 29.0902 + 21.1353i 1.12638 + 0.818362i
\(668\) 20.9576 15.2266i 0.810874 0.589134i
\(669\) 0 0
\(670\) 2.07990 0.0803536
\(671\) 4.04677 15.4332i 0.156224 0.595794i
\(672\) 0 0
\(673\) 15.1845 46.7332i 0.585321 1.80143i −0.0126574 0.999920i \(-0.504029\pi\)
0.597978 0.801512i \(-0.295971\pi\)
\(674\) 57.8571 42.0356i 2.22857 1.61915i
\(675\) 0 0
\(676\) 0.112939 + 0.347591i 0.00434382 + 0.0133689i
\(677\) 14.1181 + 43.4511i 0.542603 + 1.66996i 0.726622 + 0.687038i \(0.241089\pi\)
−0.184019 + 0.982923i \(0.558911\pi\)
\(678\) 0 0
\(679\) 1.29857 0.943466i 0.0498345 0.0362069i
\(680\) −4.08104 + 12.5601i −0.156501 + 0.481660i
\(681\) 0 0
\(682\) −5.00468 12.8316i −0.191639 0.491347i
\(683\) −47.1991 −1.80602 −0.903012 0.429615i \(-0.858649\pi\)
−0.903012 + 0.429615i \(0.858649\pi\)
\(684\) 0 0
\(685\) −0.364093 + 0.264529i −0.0139113 + 0.0101071i
\(686\) 40.2739 + 29.2607i 1.53766 + 1.11718i
\(687\) 0 0
\(688\) −2.83563 8.72717i −0.108107 0.332720i
\(689\) −27.7554 20.1655i −1.05740 0.768243i
\(690\) 0 0
\(691\) 9.20361 28.3258i 0.350122 1.07756i −0.608662 0.793429i \(-0.708294\pi\)
0.958784 0.284135i \(-0.0917065\pi\)
\(692\) −31.8002 −1.20886
\(693\) 0 0
\(694\) −53.1004 −2.01566
\(695\) 5.45684 16.7944i 0.206990 0.637049i
\(696\) 0 0
\(697\) 25.4446 + 18.4866i 0.963783 + 0.700229i
\(698\) −18.3991 56.6267i −0.696417 2.14335i
\(699\) 0 0
\(700\) 56.9802 + 41.3985i 2.15365 + 1.56472i
\(701\) −0.479434 + 0.348329i −0.0181080 + 0.0131562i −0.596802 0.802388i \(-0.703562\pi\)
0.578694 + 0.815544i \(0.303562\pi\)
\(702\) 0 0
\(703\) −12.3851 −0.467115
\(704\) −18.8325 + 15.4182i −0.709778 + 0.581095i
\(705\) 0 0
\(706\) −15.9508 + 49.0915i −0.600316 + 1.84758i
\(707\) 45.4375 33.0123i 1.70885 1.24155i
\(708\) 0 0
\(709\) −10.4557 32.1793i −0.392672 1.20852i −0.930760 0.365631i \(-0.880853\pi\)
0.538088 0.842888i \(-0.319147\pi\)
\(710\) 2.84312 + 8.75023i 0.106700 + 0.328390i
\(711\) 0 0
\(712\) 54.1937 39.3740i 2.03099 1.47560i
\(713\) 1.79952 5.53834i 0.0673924 0.207412i
\(714\) 0 0
\(715\) −9.99547 6.41521i −0.373810 0.239915i
\(716\) 19.7593 0.738439
\(717\) 0 0
\(718\) −31.2171 + 22.6806i −1.16501 + 0.846431i
\(719\) −39.3929 28.6206i −1.46911 1.06737i −0.980871 0.194657i \(-0.937641\pi\)
−0.488236 0.872712i \(-0.662359\pi\)
\(720\) 0 0
\(721\) −15.7659 48.5223i −0.587151 1.80707i
\(722\) −8.66319 6.29417i −0.322410 0.234245i
\(723\) 0 0
\(724\) 11.3311 34.8736i 0.421117 1.29607i
\(725\) −41.9004 −1.55614
\(726\) 0 0
\(727\) −38.4706 −1.42680 −0.713399 0.700758i \(-0.752845\pi\)
−0.713399 + 0.700758i \(0.752845\pi\)
\(728\) −24.4112 + 75.1299i −0.904739 + 2.78450i
\(729\) 0 0
\(730\) −22.4756 16.3295i −0.831861 0.604382i
\(731\) 1.73286 + 5.33320i 0.0640922 + 0.197256i
\(732\) 0 0
\(733\) −7.72793 5.61467i −0.285437 0.207382i 0.435848 0.900020i \(-0.356448\pi\)
−0.721286 + 0.692638i \(0.756448\pi\)
\(734\) −16.3108 + 11.8505i −0.602043 + 0.437410i
\(735\) 0 0
\(736\) 1.83127 0.0675015
\(737\) 2.38397 + 1.53006i 0.0878146 + 0.0563605i
\(738\) 0 0
\(739\) 5.87978 18.0961i 0.216291 0.665675i −0.782768 0.622313i \(-0.786193\pi\)
0.999059 0.0433623i \(-0.0138070\pi\)
\(740\) 10.5031 7.63092i 0.386100 0.280518i
\(741\) 0 0
\(742\) −31.1599 95.9004i −1.14392 3.52061i
\(743\) 3.92913 + 12.0926i 0.144146 + 0.443635i 0.996900 0.0786769i \(-0.0250695\pi\)
−0.852754 + 0.522312i \(0.825070\pi\)
\(744\) 0 0
\(745\) −12.7627 + 9.27263i −0.467588 + 0.339723i
\(746\) −23.4298 + 72.1095i −0.857826 + 2.64012i
\(747\) 0 0
\(748\) −27.4740 + 22.4930i −1.00455 + 0.822425i
\(749\) 20.4348 0.746671
\(750\) 0 0
\(751\) 30.8657 22.4252i 1.12630 0.818308i 0.141151 0.989988i \(-0.454920\pi\)
0.985153 + 0.171680i \(0.0549196\pi\)
\(752\) 15.0352 + 10.9237i 0.548277 + 0.398347i
\(753\) 0 0
\(754\) −28.6685 88.2325i −1.04404 3.21324i
\(755\) 4.84739 + 3.52184i 0.176415 + 0.128173i
\(756\) 0 0
\(757\) 2.01311 6.19571i 0.0731677 0.225187i −0.907784 0.419437i \(-0.862227\pi\)
0.980952 + 0.194250i \(0.0622274\pi\)
\(758\) −48.7563 −1.77091
\(759\) 0 0
\(760\) −19.1361 −0.694140
\(761\) −13.8835 + 42.7291i −0.503278 + 1.54893i 0.300369 + 0.953823i \(0.402890\pi\)
−0.803646 + 0.595107i \(0.797110\pi\)
\(762\) 0 0
\(763\) −56.5992 41.1217i −2.04903 1.48871i
\(764\) 23.5068 + 72.3464i 0.850445 + 2.61740i
\(765\) 0 0
\(766\) 47.1252 + 34.2385i 1.70270 + 1.23709i
\(767\) 18.9443 13.7638i 0.684039 0.496983i
\(768\) 0 0
\(769\) −0.0822779 −0.00296702 −0.00148351 0.999999i \(-0.500472\pi\)
−0.00148351 + 0.999999i \(0.500472\pi\)
\(770\) −12.6847 32.5225i −0.457125 1.17203i
\(771\) 0 0
\(772\) −21.6717 + 66.6986i −0.779982 + 2.40054i
\(773\) −15.3850 + 11.1779i −0.553361 + 0.402040i −0.829023 0.559215i \(-0.811103\pi\)
0.275662 + 0.961255i \(0.411103\pi\)
\(774\) 0 0
\(775\) 2.09693 + 6.45369i 0.0753240 + 0.231823i
\(776\) 0.579717 + 1.78419i 0.0208106 + 0.0640486i
\(777\) 0 0
\(778\) −16.9517 + 12.3161i −0.607748 + 0.441555i
\(779\) −14.0827 + 43.3421i −0.504565 + 1.55289i
\(780\) 0 0
\(781\) −3.17825 + 12.1210i −0.113727 + 0.433722i
\(782\) −22.4205 −0.801755
\(783\) 0 0
\(784\) −40.8464 + 29.6766i −1.45880 + 1.05988i
\(785\) 5.99111 + 4.35280i 0.213832 + 0.155358i
\(786\) 0 0
\(787\) 2.66677 + 8.20747i 0.0950601 + 0.292565i 0.987269 0.159057i \(-0.0508455\pi\)
−0.892209 + 0.451622i \(0.850845\pi\)
\(788\) −19.8978 14.4566i −0.708829 0.514994i
\(789\) 0 0
\(790\) 4.62300 14.2281i 0.164479 0.506214i
\(791\) −3.67249 −0.130579
\(792\) 0 0
\(793\) −17.4049 −0.618068
\(794\) 2.87671 8.85359i 0.102091 0.314202i
\(795\) 0 0
\(796\) 33.1547 + 24.0883i 1.17514 + 0.853788i
\(797\) 5.12156 + 15.7626i 0.181415 + 0.558338i 0.999868 0.0162351i \(-0.00516802\pi\)
−0.818453 + 0.574573i \(0.805168\pi\)
\(798\) 0 0
\(799\) −9.18806 6.67552i −0.325050 0.236163i
\(800\) −1.72639 + 1.25429i −0.0610370 + 0.0443460i
\(801\) 0 0
\(802\) 43.1870 1.52499
\(803\) −13.7488 35.2508i −0.485184 1.24397i
\(804\) 0 0
\(805\) 4.56099 14.0373i 0.160754 0.494749i
\(806\) −12.1552 + 8.83130i −0.428150 + 0.311069i
\(807\) 0 0
\(808\) 20.2846 + 62.4295i 0.713608 + 2.19626i
\(809\) 6.99703 + 21.5347i 0.246003 + 0.757118i 0.995470 + 0.0950768i \(0.0303097\pi\)
−0.749467 + 0.662041i \(0.769690\pi\)
\(810\) 0 0
\(811\) 45.7773 33.2592i 1.60746 1.16789i 0.736635 0.676290i \(-0.236413\pi\)
0.870823 0.491597i \(-0.163587\pi\)
\(812\) 56.4213 173.647i 1.98000 6.09382i
\(813\) 0 0
\(814\) 26.3623 1.52336i 0.923999 0.0533936i
\(815\) −13.8338 −0.484578
\(816\) 0 0
\(817\) −6.57362 + 4.77601i −0.229982 + 0.167092i
\(818\) 56.3108 + 40.9122i 1.96886 + 1.43046i
\(819\) 0 0
\(820\) −14.7619 45.4325i −0.515508 1.58657i
\(821\) 38.3065 + 27.8313i 1.33690 + 0.971318i 0.999552 + 0.0299397i \(0.00953152\pi\)
0.337353 + 0.941378i \(0.390468\pi\)
\(822\) 0 0
\(823\) −2.15721 + 6.63922i −0.0751957 + 0.231429i −0.981589 0.191007i \(-0.938825\pi\)
0.906393 + 0.422435i \(0.138825\pi\)
\(824\) 59.6296 2.07729
\(825\) 0 0
\(826\) 68.8249 2.39472
\(827\) 12.3062 37.8747i 0.427929 1.31703i −0.472232 0.881474i \(-0.656551\pi\)
0.900161 0.435557i \(-0.143449\pi\)
\(828\) 0 0
\(829\) 26.7634 + 19.4447i 0.929530 + 0.675343i 0.945878 0.324524i \(-0.105204\pi\)
−0.0163480 + 0.999866i \(0.505204\pi\)
\(830\) −2.52848 7.78186i −0.0877648 0.270112i
\(831\) 0 0
\(832\) 21.4801 + 15.6062i 0.744688 + 0.541047i
\(833\) 24.9614 18.1355i 0.864860 0.628357i
\(834\) 0 0
\(835\) 6.32591 0.218917
\(836\) −43.2987 27.7896i −1.49752 0.961125i
\(837\) 0 0
\(838\) −24.5083 + 75.4288i −0.846626 + 2.60565i
\(839\) 27.6635 20.0987i 0.955052 0.693886i 0.00305543 0.999995i \(-0.499027\pi\)
0.951996 + 0.306110i \(0.0990274\pi\)
\(840\) 0 0
\(841\) 24.6042 + 75.7238i 0.848419 + 2.61117i
\(842\) 21.6239 + 66.5515i 0.745209 + 2.29352i
\(843\) 0 0
\(844\) −48.3390 + 35.1204i −1.66390 + 1.20889i
\(845\) −0.0275793 + 0.0848805i −0.000948758 + 0.00291998i
\(846\) 0 0
\(847\) 9.38576 46.6085i 0.322498 1.60149i
\(848\) 40.9846 1.40742
\(849\) 0 0
\(850\) 21.1364 15.3565i 0.724973 0.526724i
\(851\) 9.03251 + 6.56250i 0.309631 + 0.224960i
\(852\) 0 0
\(853\) −2.36127 7.26723i −0.0808482 0.248825i 0.902460 0.430774i \(-0.141759\pi\)
−0.983308 + 0.181949i \(0.941759\pi\)
\(854\) −41.3861 30.0688i −1.41620 1.02893i
\(855\) 0 0
\(856\) −7.38038 + 22.7145i −0.252256 + 0.776365i
\(857\) −27.6052 −0.942976 −0.471488 0.881873i \(-0.656283\pi\)
−0.471488 + 0.881873i \(0.656283\pi\)
\(858\) 0 0
\(859\) −17.0244 −0.580864 −0.290432 0.956896i \(-0.593799\pi\)
−0.290432 + 0.956896i \(0.593799\pi\)
\(860\) 2.63200 8.10047i 0.0897506 0.276224i
\(861\) 0 0
\(862\) 53.3283 + 38.7453i 1.81637 + 1.31967i
\(863\) −3.17117 9.75984i −0.107948 0.332229i 0.882463 0.470381i \(-0.155884\pi\)
−0.990411 + 0.138152i \(0.955884\pi\)
\(864\) 0 0
\(865\) −6.28240 4.56443i −0.213608 0.155195i
\(866\) −18.7150 + 13.5973i −0.635963 + 0.462054i
\(867\) 0 0
\(868\) −29.5695 −1.00366
\(869\) 15.7656 12.9073i 0.534813 0.437851i
\(870\) 0 0
\(871\) 0.954915 2.93893i 0.0323561 0.0995817i
\(872\) 66.1511 48.0616i 2.24016 1.62757i
\(873\) 0 0
\(874\) −10.0391 30.8970i −0.339576 1.04511i
\(875\) 11.9247 + 36.7005i 0.403129 + 1.24070i
\(876\) 0 0
\(877\) 18.0108 13.0856i 0.608181 0.441869i −0.240592 0.970626i \(-0.577342\pi\)
0.848773 + 0.528757i \(0.177342\pi\)
\(878\) 13.6062 41.8755i 0.459187 1.41323i
\(879\) 0 0
\(880\) 14.1650 0.818529i 0.477501 0.0275926i
\(881\) 3.58540 0.120795 0.0603976 0.998174i \(-0.480763\pi\)
0.0603976 + 0.998174i \(0.480763\pi\)
\(882\) 0 0
\(883\) −36.3972 + 26.4441i −1.22486 + 0.889916i −0.996495 0.0836583i \(-0.973340\pi\)
−0.228370 + 0.973574i \(0.573340\pi\)
\(884\) 31.3364 + 22.7673i 1.05396 + 0.765745i
\(885\) 0 0
\(886\) −13.9750 43.0106i −0.469499 1.44497i
\(887\) 11.9764 + 8.70139i 0.402129 + 0.292164i 0.770408 0.637551i \(-0.220053\pi\)
−0.368278 + 0.929716i \(0.620053\pi\)
\(888\) 0 0
\(889\) 15.5663 47.9081i 0.522077 1.60679i
\(890\) 32.2919 1.08243
\(891\) 0 0
\(892\) 2.48862 0.0833253
\(893\) 5.08527 15.6508i 0.170172 0.523735i
\(894\) 0 0
\(895\) 3.90362 + 2.83615i 0.130484 + 0.0948019i
\(896\) 25.5328 + 78.5817i 0.852989 + 2.62523i
\(897\) 0 0
\(898\) −11.9357 8.67181i −0.398300 0.289382i
\(899\) 14.2316 10.3399i 0.474651 0.344854i
\(900\) 0 0
\(901\) −25.0458 −0.834397
\(902\) 24.6446 93.9876i 0.820575 3.12944i
\(903\) 0 0
\(904\) 1.32638 4.08219i 0.0441149 0.135772i
\(905\) 7.24413 5.26317i 0.240803 0.174954i
\(906\) 0 0
\(907\) 7.40837 + 22.8006i 0.245991 + 0.757083i 0.995472 + 0.0950565i \(0.0303032\pi\)
−0.749481 + 0.662026i \(0.769697\pi\)
\(908\) −14.5421 44.7561i −0.482598 1.48528i
\(909\) 0 0
\(910\) −30.8083 + 22.3835i −1.02128 + 0.742006i
\(911\) 6.93704 21.3500i 0.229835 0.707358i −0.767930 0.640534i \(-0.778713\pi\)
0.997765 0.0668244i \(-0.0212867\pi\)
\(912\) 0 0
\(913\) 2.82652 10.7796i 0.0935442 0.356751i
\(914\) −62.8240 −2.07803
\(915\) 0 0
\(916\) −2.66738 + 1.93796i −0.0881326 + 0.0640321i
\(917\) −0.849011 0.616842i −0.0280368 0.0203699i
\(918\) 0 0
\(919\) 5.84951 + 18.0029i 0.192958 + 0.593862i 0.999994 + 0.00336124i \(0.00106992\pi\)
−0.807037 + 0.590501i \(0.798930\pi\)
\(920\) 13.9560 + 10.1396i 0.460116 + 0.334294i
\(921\) 0 0
\(922\) −24.0009 + 73.8672i −0.790428 + 2.43269i
\(923\) 13.6695 0.449937
\(924\) 0 0
\(925\) −13.0101 −0.427768
\(926\) −2.86181 + 8.80775i −0.0940450 + 0.289441i
\(927\) 0 0
\(928\) 4.47541 + 3.25158i 0.146913 + 0.106738i
\(929\) −6.82412 21.0025i −0.223892 0.689069i −0.998402 0.0565076i \(-0.982003\pi\)
0.774510 0.632562i \(-0.217997\pi\)
\(930\) 0 0
\(931\) 36.1687 + 26.2781i 1.18538 + 0.861231i
\(932\) −56.5695 + 41.1001i −1.85300 + 1.34628i
\(933\) 0 0
\(934\) 14.3969 0.471080
\(935\) −8.65627 + 0.500206i −0.283090 + 0.0163585i
\(936\) 0 0
\(937\) 3.73772 11.5035i 0.122106 0.375804i −0.871257 0.490828i \(-0.836694\pi\)
0.993363 + 0.115024i \(0.0366945\pi\)
\(938\) 7.34792 5.33858i 0.239918 0.174311i
\(939\) 0 0
\(940\) 5.33054 + 16.4057i 0.173863 + 0.535095i
\(941\) 6.37683 + 19.6259i 0.207879 + 0.639785i 0.999583 + 0.0288803i \(0.00919417\pi\)
−0.791704 + 0.610905i \(0.790806\pi\)
\(942\) 0 0
\(943\) 33.2361 24.1475i 1.08232 0.786350i
\(944\) −8.64439 + 26.6047i −0.281351 + 0.865909i
\(945\) 0 0
\(946\) 13.4048 10.9745i 0.435827 0.356812i
\(947\) 5.27445 0.171397 0.0856983 0.996321i \(-0.472688\pi\)
0.0856983 + 0.996321i \(0.472688\pi\)
\(948\) 0 0
\(949\) −33.3927 + 24.2612i −1.08397 + 0.787553i
\(950\) 30.6264 + 22.2514i 0.993653 + 0.721931i
\(951\) 0 0
\(952\) 17.8211 + 54.8477i 0.577586 + 1.77763i
\(953\) 43.2076 + 31.3922i 1.39963 + 1.01689i 0.994730 + 0.102532i \(0.0326945\pi\)
0.404902 + 0.914360i \(0.367306\pi\)
\(954\) 0 0
\(955\) −5.74026 + 17.6667i −0.185751 + 0.571681i
\(956\) 0.809640 0.0261856
\(957\) 0 0
\(958\) 63.2050 2.04206
\(959\) −0.607297 + 1.86907i −0.0196106 + 0.0603553i
\(960\) 0 0
\(961\) 22.7747 + 16.5468i 0.734668 + 0.533767i
\(962\) −8.90156 27.3962i −0.286998 0.883288i
\(963\) 0 0
\(964\) −48.6326 35.3336i −1.56635 1.13802i
\(965\) −13.8550 + 10.0663i −0.446009 + 0.324044i
\(966\) 0 0
\(967\) 44.5529 1.43273 0.716363 0.697728i \(-0.245806\pi\)
0.716363 + 0.697728i \(0.245806\pi\)
\(968\) 48.4182 + 27.2663i 1.55622 + 0.876372i
\(969\) 0 0
\(970\) −0.279460 + 0.860089i −0.00897291 + 0.0276158i
\(971\) −32.0517 + 23.2869i −1.02859 + 0.747313i −0.968026 0.250852i \(-0.919289\pi\)
−0.0605623 + 0.998164i \(0.519289\pi\)
\(972\) 0 0
\(973\) −23.8290 73.3381i −0.763922 2.35111i
\(974\) 4.04022 + 12.4345i 0.129457 + 0.398428i
\(975\) 0 0
\(976\) 16.8214 12.2214i 0.538439 0.391199i
\(977\) 17.5677 54.0679i 0.562041 1.72979i −0.114541 0.993418i \(-0.536540\pi\)
0.676583 0.736367i \(-0.263460\pi\)
\(978\) 0 0
\(979\) 37.0128 + 23.7552i 1.18293 + 0.759220i
\(980\) −46.8633 −1.49699
\(981\) 0 0
\(982\) 4.90574 3.56423i 0.156548 0.113739i
\(983\) 9.04164 + 6.56913i 0.288383 + 0.209523i 0.722566 0.691302i \(-0.242963\pi\)
−0.434182 + 0.900825i \(0.642963\pi\)
\(984\) 0 0
\(985\) −1.85596 5.71205i −0.0591357 0.182001i
\(986\) −54.7931 39.8095i −1.74497 1.26779i
\(987\) 0 0
\(988\) −17.3436 + 53.3781i −0.551774 + 1.69818i
\(989\) 7.32482 0.232916
\(990\) 0 0
\(991\) −37.0475 −1.17685 −0.588426 0.808551i \(-0.700252\pi\)
−0.588426 + 0.808551i \(0.700252\pi\)
\(992\) 0.276848 0.852050i 0.00878993 0.0270526i
\(993\) 0 0
\(994\) 32.5039 + 23.6154i 1.03096 + 0.749036i
\(995\) 3.09250 + 9.51772i 0.0980387 + 0.301732i
\(996\) 0 0
\(997\) −34.8630 25.3294i −1.10412 0.802191i −0.122394 0.992482i \(-0.539057\pi\)
−0.981728 + 0.190290i \(0.939057\pi\)
\(998\) 44.3921 32.2527i 1.40521 1.02094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.f.b.163.1 yes 16
3.2 odd 2 inner 297.2.f.b.163.4 yes 16
9.2 odd 6 891.2.n.h.757.1 32
9.4 even 3 891.2.n.h.460.1 32
9.5 odd 6 891.2.n.h.460.4 32
9.7 even 3 891.2.n.h.757.4 32
11.4 even 5 3267.2.a.bj.1.1 8
11.5 even 5 inner 297.2.f.b.82.1 16
11.7 odd 10 3267.2.a.bi.1.8 8
33.5 odd 10 inner 297.2.f.b.82.4 yes 16
33.26 odd 10 3267.2.a.bj.1.8 8
33.29 even 10 3267.2.a.bi.1.1 8
99.5 odd 30 891.2.n.h.379.1 32
99.16 even 15 891.2.n.h.676.1 32
99.38 odd 30 891.2.n.h.676.4 32
99.49 even 15 891.2.n.h.379.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.b.82.1 16 11.5 even 5 inner
297.2.f.b.82.4 yes 16 33.5 odd 10 inner
297.2.f.b.163.1 yes 16 1.1 even 1 trivial
297.2.f.b.163.4 yes 16 3.2 odd 2 inner
891.2.n.h.379.1 32 99.5 odd 30
891.2.n.h.379.4 32 99.49 even 15
891.2.n.h.460.1 32 9.4 even 3
891.2.n.h.460.4 32 9.5 odd 6
891.2.n.h.676.1 32 99.16 even 15
891.2.n.h.676.4 32 99.38 odd 30
891.2.n.h.757.1 32 9.2 odd 6
891.2.n.h.757.4 32 9.7 even 3
3267.2.a.bi.1.1 8 33.29 even 10
3267.2.a.bi.1.8 8 11.7 odd 10
3267.2.a.bj.1.1 8 11.4 even 5
3267.2.a.bj.1.8 8 33.26 odd 10