Properties

Label 4-3276e2-1.1-c0e2-0-6
Degree $4$
Conductor $10732176$
Sign $1$
Analytic cond. $2.67301$
Root an. cond. $1.27864$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 13-s + 19-s + 25-s − 31-s − 3·37-s + 2·43-s + 3·67-s − 73-s − 79-s − 91-s + 4·97-s + 3·103-s − 3·109-s − 121-s + 127-s + 131-s + 133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 175-s + ⋯
L(s)  = 1  + 7-s − 13-s + 19-s + 25-s − 31-s − 3·37-s + 2·43-s + 3·67-s − 73-s − 79-s − 91-s + 4·97-s + 3·103-s − 3·109-s − 121-s + 127-s + 131-s + 133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10732176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10732176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10732176\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2.67301\)
Root analytic conductor: \(1.27864\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10732176,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.512209267\)
\(L(\frac12)\) \(\approx\) \(1.512209267\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 - T + T^{2} \)
13$C_2$ \( 1 + T + T^{2} \)
good5$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$ \( ( 1 - T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.808018708222388361083739690713, −8.721428239091977409328540396038, −8.401355427901258069745534586826, −7.66521178533855076083032342665, −7.45735289571565894306087454559, −7.43222892996541527102605340630, −6.75956202037514628747692063659, −6.56800741298661335828446199808, −5.88678262867663424321559775989, −5.44319723677949011773746802858, −5.15096420313049167300489309310, −4.97000157823228307008810694099, −4.44807774789521778769943661440, −3.97272916804872554483507145888, −3.39270829817011179627149256740, −3.16915981514255235502836625509, −2.39169030920415275690909324094, −2.05766945114930847803090718769, −1.51273442492794027975358946607, −0.76928232423461740911054470868, 0.76928232423461740911054470868, 1.51273442492794027975358946607, 2.05766945114930847803090718769, 2.39169030920415275690909324094, 3.16915981514255235502836625509, 3.39270829817011179627149256740, 3.97272916804872554483507145888, 4.44807774789521778769943661440, 4.97000157823228307008810694099, 5.15096420313049167300489309310, 5.44319723677949011773746802858, 5.88678262867663424321559775989, 6.56800741298661335828446199808, 6.75956202037514628747692063659, 7.43222892996541527102605340630, 7.45735289571565894306087454559, 7.66521178533855076083032342665, 8.401355427901258069745534586826, 8.721428239091977409328540396038, 8.808018708222388361083739690713

Graph of the $Z$-function along the critical line