Properties

Label 3276.1.ek.b
Level 32763276
Weight 11
Character orbit 3276.ek
Analytic conductor 1.6351.635
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,1,Mod(649,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.649");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3276.ek (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.634936981391.63493698139
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.15951590928.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ6q7+ζ62q13+ζ6q19ζ62q25+ζ62q31+(ζ621)q37+q43+ζ62q49+(ζ6+1)q67+ζ62q73++2q97+O(q100) q + \zeta_{6} q^{7} + \zeta_{6}^{2} q^{13} + \zeta_{6} q^{19} - \zeta_{6}^{2} q^{25} + \zeta_{6}^{2} q^{31} + (\zeta_{6}^{2} - 1) q^{37} + q^{43} + \zeta_{6}^{2} q^{49} + (\zeta_{6} + 1) q^{67} + \zeta_{6}^{2} q^{73} + \cdots + 2 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q7q13+q19+q25q313q37+2q43q49+3q67q73q792q91+4q97+O(q100) 2 q + q^{7} - q^{13} + q^{19} + q^{25} - q^{31} - 3 q^{37} + 2 q^{43} - q^{49} + 3 q^{67} - q^{73} - q^{79} - 2 q^{91} + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 1-1 ζ6\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
649.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 0.500000 0.866025i 0 0 0
1585.1 0 0 0 0 0 0.500000 + 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
91.s odd 6 1 inner
273.ba even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.1.ek.b yes 2
3.b odd 2 1 CM 3276.1.ek.b yes 2
7.d odd 6 1 3276.1.ek.a 2
13.b even 2 1 3276.1.ek.a 2
21.g even 6 1 3276.1.ek.a 2
39.d odd 2 1 3276.1.ek.a 2
91.s odd 6 1 inner 3276.1.ek.b yes 2
273.ba even 6 1 inner 3276.1.ek.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3276.1.ek.a 2 7.d odd 6 1
3276.1.ek.a 2 13.b even 2 1
3276.1.ek.a 2 21.g even 6 1
3276.1.ek.a 2 39.d odd 2 1
3276.1.ek.b yes 2 1.a even 1 1 trivial
3276.1.ek.b yes 2 3.b odd 2 1 CM
3276.1.ek.b yes 2 91.s odd 6 1 inner
3276.1.ek.b yes 2 273.ba even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T192T19+1 T_{19}^{2} - T_{19} + 1 acting on S1new(3276,[χ])S_{1}^{\mathrm{new}}(3276, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
3737 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 (T2)2 (T - 2)^{2} Copy content Toggle raw display
show more
show less