L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)19-s + (0.5 − 0.866i)25-s + (−0.5 + 0.866i)31-s + (−1.5 + 0.866i)37-s + 43-s + (−0.499 + 0.866i)49-s + (1.5 + 0.866i)67-s + (−0.5 + 0.866i)73-s + (−0.5 − 0.866i)79-s − 0.999·91-s + 2·97-s + (1.5 − 0.866i)103-s + (−1.5 − 0.866i)109-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)19-s + (0.5 − 0.866i)25-s + (−0.5 + 0.866i)31-s + (−1.5 + 0.866i)37-s + 43-s + (−0.499 + 0.866i)49-s + (1.5 + 0.866i)67-s + (−0.5 + 0.866i)73-s + (−0.5 − 0.866i)79-s − 0.999·91-s + 2·97-s + (1.5 − 0.866i)103-s + (−1.5 − 0.866i)109-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.386−0.922i)Λ(1−s)
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.386−0.922i
|
Analytic conductor: |
1.63493 |
Root analytic conductor: |
1.27864 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1585,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :0), 0.386−0.922i)
|
Particular Values
L(21) |
≈ |
1.229719182 |
L(21) |
≈ |
1.229719182 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.5−0.866i)T |
| 13 | 1+(0.5−0.866i)T |
good | 5 | 1+(−0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1−T+T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(−0.5−0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1−2T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.808018708222388361083739690713, −8.401355427901258069745534586826, −7.45735289571565894306087454559, −6.75956202037514628747692063659, −5.88678262867663424321559775989, −5.15096420313049167300489309310, −4.44807774789521778769943661440, −3.39270829817011179627149256740, −2.39169030920415275690909324094, −1.51273442492794027975358946607,
0.76928232423461740911054470868, 2.05766945114930847803090718769, 3.16915981514255235502836625509, 3.97272916804872554483507145888, 4.97000157823228307008810694099, 5.44319723677949011773746802858, 6.56800741298661335828446199808, 7.43222892996541527102605340630, 7.66521178533855076083032342665, 8.721428239091977409328540396038