L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)19-s + (0.5 − 0.866i)25-s + (−0.5 + 0.866i)31-s + (−1.5 + 0.866i)37-s + 43-s + (−0.499 + 0.866i)49-s + (1.5 + 0.866i)67-s + (−0.5 + 0.866i)73-s + (−0.5 − 0.866i)79-s − 0.999·91-s + 2·97-s + (1.5 − 0.866i)103-s + (−1.5 − 0.866i)109-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)7-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)19-s + (0.5 − 0.866i)25-s + (−0.5 + 0.866i)31-s + (−1.5 + 0.866i)37-s + 43-s + (−0.499 + 0.866i)49-s + (1.5 + 0.866i)67-s + (−0.5 + 0.866i)73-s + (−0.5 − 0.866i)79-s − 0.999·91-s + 2·97-s + (1.5 − 0.866i)103-s + (−1.5 − 0.866i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.229719182\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.229719182\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.808018708222388361083739690713, −8.401355427901258069745534586826, −7.45735289571565894306087454559, −6.75956202037514628747692063659, −5.88678262867663424321559775989, −5.15096420313049167300489309310, −4.44807774789521778769943661440, −3.39270829817011179627149256740, −2.39169030920415275690909324094, −1.51273442492794027975358946607,
0.76928232423461740911054470868, 2.05766945114930847803090718769, 3.16915981514255235502836625509, 3.97272916804872554483507145888, 4.97000157823228307008810694099, 5.44319723677949011773746802858, 6.56800741298661335828446199808, 7.43222892996541527102605340630, 7.66521178533855076083032342665, 8.721428239091977409328540396038