L(s) = 1 | + (−2.45 + 2.45i)5-s + (−1.75 − 1.97i)7-s + (−4.08 + 4.08i)11-s + (−2.80 − 2.27i)13-s − 1.70·17-s + (−3.16 + 3.16i)19-s − 8.05i·23-s − 7.05i·25-s − 0.784·29-s + (0.750 − 0.750i)31-s + (9.16 + 0.529i)35-s + (4.39 − 4.39i)37-s + (−0.897 + 0.897i)41-s + 7.57i·43-s + (−2.43 − 2.43i)47-s + ⋯ |
L(s) = 1 | + (−1.09 + 1.09i)5-s + (−0.665 − 0.746i)7-s + (−1.23 + 1.23i)11-s + (−0.776 − 0.629i)13-s − 0.413·17-s + (−0.726 + 0.726i)19-s − 1.67i·23-s − 1.41i·25-s − 0.145·29-s + (0.134 − 0.134i)31-s + (1.54 + 0.0895i)35-s + (0.723 − 0.723i)37-s + (−0.140 + 0.140i)41-s + 1.15i·43-s + (−0.354 − 0.354i)47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.969+0.245i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.969+0.245i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.969+0.245i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1945,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.969+0.245i)
|
Particular Values
L(1) |
≈ |
0.5560968104 |
L(21) |
≈ |
0.5560968104 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(1.75+1.97i)T |
| 13 | 1+(2.80+2.27i)T |
good | 5 | 1+(2.45−2.45i)T−5iT2 |
| 11 | 1+(4.08−4.08i)T−11iT2 |
| 17 | 1+1.70T+17T2 |
| 19 | 1+(3.16−3.16i)T−19iT2 |
| 23 | 1+8.05iT−23T2 |
| 29 | 1+0.784T+29T2 |
| 31 | 1+(−0.750+0.750i)T−31iT2 |
| 37 | 1+(−4.39+4.39i)T−37iT2 |
| 41 | 1+(0.897−0.897i)T−41iT2 |
| 43 | 1−7.57iT−43T2 |
| 47 | 1+(2.43+2.43i)T+47iT2 |
| 53 | 1−6.24T+53T2 |
| 59 | 1+(−5.29−5.29i)T+59iT2 |
| 61 | 1−0.691iT−61T2 |
| 67 | 1+(−7.16−7.16i)T+67iT2 |
| 71 | 1+(−11.1−11.1i)T+71iT2 |
| 73 | 1+(−1.09−1.09i)T+73iT2 |
| 79 | 1+7.14T+79T2 |
| 83 | 1+(−3.09+3.09i)T−83iT2 |
| 89 | 1+(8.20+8.20i)T+89iT2 |
| 97 | 1+(9.21−9.21i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.204069666798083456206710373852, −7.88748937197649150340548799967, −6.94662782961085287246419032946, −6.84046644997339271508295112399, −5.61083673598891722464010428844, −4.45087102278136783075812571847, −4.05016767119984673009072210209, −2.87596279491498457344742109845, −2.39657804375735325806557621442, −0.32320301992264541130044798433,
0.53939929680852307308973977036, 2.17372520600892221895660724563, 3.15306673317966416801561432801, 3.97282003470413442351668701769, 4.98972757988454184463659375620, 5.40094246788367066214255410725, 6.41344133581419601190880523928, 7.31819071829264252437879260341, 8.110070600920168448050795378790, 8.593157777475803677877522737933