Properties

Label 3276.2.bi.c
Level 32763276
Weight 22
Character orbit 3276.bi
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1945,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1945");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.bi (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(i)\Q(i)
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+36x14+472x12+2912x10+8914x8+13164x6+8828x4+2648x2+289 x^{16} + 36x^{14} + 472x^{12} + 2912x^{10} + 8914x^{8} + 13164x^{6} + 8828x^{4} + 2648x^{2} + 289 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β14+β4)q5+(β8+β5+β3)q7+(β12β101)q11+(β14β7+β1)q13β1q17++(3β14+β9++β1)q97+O(q100) q + (\beta_{14} + \beta_{4}) q^{5} + ( - \beta_{8} + \beta_{5} + \cdots - \beta_{3}) q^{7} + ( - \beta_{12} - \beta_{10} - 1) q^{11} + ( - \beta_{14} - \beta_{7} + \cdots - \beta_1) q^{13} - \beta_1 q^{17}+ \cdots + (3 \beta_{14} + \beta_{9} + \cdots + \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q712q1120q29+40q3528q53+20q65+8q67+4q71+4q79+4q85+10q91+O(q100) 16 q - 2 q^{7} - 12 q^{11} - 20 q^{29} + 40 q^{35} - 28 q^{53} + 20 q^{65} + 8 q^{67} + 4 q^{71} + 4 q^{79} + 4 q^{85} + 10 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+36x14+472x12+2912x10+8914x8+13164x6+8828x4+2648x2+289 x^{16} + 36x^{14} + 472x^{12} + 2912x^{10} + 8914x^{8} + 13164x^{6} + 8828x^{4} + 2648x^{2} + 289 : Copy content Toggle raw display

β1\beta_{1}== (590ν14+20965ν12+268794ν10+1595550ν8+4545302ν6+5780895ν4++433464)/14924 ( 590 \nu^{14} + 20965 \nu^{12} + 268794 \nu^{10} + 1595550 \nu^{8} + 4545302 \nu^{6} + 5780895 \nu^{4} + \cdots + 433464 ) / 14924 Copy content Toggle raw display
β2\beta_{2}== (590ν14+20965ν12+268794ν10+1595550ν8+4545302ν6+5780895ν4++396154)/7462 ( 590 \nu^{14} + 20965 \nu^{12} + 268794 \nu^{10} + 1595550 \nu^{8} + 4545302 \nu^{6} + 5780895 \nu^{4} + \cdots + 396154 ) / 7462 Copy content Toggle raw display
β3\beta_{3}== (2102ν1474891ν12964252ν105760993ν816583714ν6+1685303)/14924 ( - 2102 \nu^{14} - 74891 \nu^{12} - 964252 \nu^{10} - 5760993 \nu^{8} - 16583714 \nu^{6} + \cdots - 1685303 ) / 14924 Copy content Toggle raw display
β4\beta_{4}== (33003ν15+23477ν141151473ν13+844135ν1214284923ν11++40958865)/2029664 ( - 33003 \nu^{15} + 23477 \nu^{14} - 1151473 \nu^{13} + 844135 \nu^{12} - 14284923 \nu^{11} + \cdots + 40958865 ) / 2029664 Copy content Toggle raw display
β5\beta_{5}== (33003ν15262395ν14+1151473ν139341041ν12+14284923ν11+188242343)/2029664 ( 33003 \nu^{15} - 262395 \nu^{14} + 1151473 \nu^{13} - 9341041 \nu^{12} + 14284923 \nu^{11} + \cdots - 188242343 ) / 2029664 Copy content Toggle raw display
β6\beta_{6}== (39901ν15+53805ν14+1427545ν13+1919657ν12+18511581ν11++48177439)/1014832 ( 39901 \nu^{15} + 53805 \nu^{14} + 1427545 \nu^{13} + 1919657 \nu^{12} + 18511581 \nu^{11} + \cdots + 48177439 ) / 1014832 Copy content Toggle raw display
β7\beta_{7}== (39901ν1553805ν14+1427545ν131919657ν12+18511581ν11+48177439)/1014832 ( 39901 \nu^{15} - 53805 \nu^{14} + 1427545 \nu^{13} - 1919657 \nu^{12} + 18511581 \nu^{11} + \cdots - 48177439 ) / 1014832 Copy content Toggle raw display
β8\beta_{8}== (93265ν15+23477ν14+3323523ν13+844135ν12+42807025ν11++40958865)/2029664 ( 93265 \nu^{15} + 23477 \nu^{14} + 3323523 \nu^{13} + 844135 \nu^{12} + 42807025 \nu^{11} + \cdots + 40958865 ) / 2029664 Copy content Toggle raw display
β9\beta_{9}== (24620ν15+876290ν13+11264235ν11+67123942ν9+192338330ν7++18692776ν)/253708 ( 24620 \nu^{15} + 876290 \nu^{13} + 11264235 \nu^{11} + 67123942 \nu^{9} + 192338330 \nu^{7} + \cdots + 18692776 \nu ) / 253708 Copy content Toggle raw display
β10\beta_{10}== (24620ν15+876290ν13+11264235ν11+67123942ν9+192338330ν7++18439068ν)/253708 ( 24620 \nu^{15} + 876290 \nu^{13} + 11264235 \nu^{11} + 67123942 \nu^{9} + 192338330 \nu^{7} + \cdots + 18439068 \nu ) / 253708 Copy content Toggle raw display
β11\beta_{11}== (56088ν1570312ν142001743ν132497538ν1225853206ν11+43679358)/507416 ( - 56088 \nu^{15} - 70312 \nu^{14} - 2001743 \nu^{13} - 2497538 \nu^{12} - 25853206 \nu^{11} + \cdots - 43679358 ) / 507416 Copy content Toggle raw display
β12\beta_{12}== (56088ν15+70312ν142001743ν13+2497538ν1225853206ν11++43679358)/507416 ( - 56088 \nu^{15} + 70312 \nu^{14} - 2001743 \nu^{13} + 2497538 \nu^{12} - 25853206 \nu^{11} + \cdots + 43679358 ) / 507416 Copy content Toggle raw display
β13\beta_{13}== (259235ν15+268345ν14+9242377ν13+9562143ν12+119142639ν11++205735581)/2029664 ( 259235 \nu^{15} + 268345 \nu^{14} + 9242377 \nu^{13} + 9562143 \nu^{12} + 119142639 \nu^{11} + \cdots + 205735581 ) / 2029664 Copy content Toggle raw display
β14\beta_{14}== (259235ν1517527ν149242377ν13623033ν12119142639ν11+23465627)/2029664 ( - 259235 \nu^{15} - 17527 \nu^{14} - 9242377 \nu^{13} - 623033 \nu^{12} - 119142639 \nu^{11} + \cdots - 23465627 ) / 2029664 Copy content Toggle raw display
β15\beta_{15}== (39210ν151396175ν1317958972ν11107123534ν9307406526ν7+29255540ν)/253708 ( - 39210 \nu^{15} - 1396175 \nu^{13} - 17958972 \nu^{11} - 107123534 \nu^{9} - 307406526 \nu^{7} + \cdots - 29255540 \nu ) / 253708 Copy content Toggle raw display
ν\nu== β10+β9 -\beta_{10} + \beta_{9} Copy content Toggle raw display
ν2\nu^{2}== β2+2β15 -\beta_{2} + 2\beta _1 - 5 Copy content Toggle raw display
ν3\nu^{3}== 3β15β14+β13+10β109β9+β7+β6+β5β4 3\beta_{15} - \beta_{14} + \beta_{13} + 10\beta_{10} - 9\beta_{9} + \beta_{7} + \beta_{6} + \beta_{5} - \beta_{4} Copy content Toggle raw display
ν4\nu^{4}== 4β144β13β12+β114β7+4β64β5++51 - 4 \beta_{14} - 4 \beta_{13} - \beta_{12} + \beta_{11} - 4 \beta_{7} + 4 \beta_{6} - 4 \beta_{5} + \cdots + 51 Copy content Toggle raw display
ν5\nu^{5}== 60β15+20β1420β13+5β12+5β11111β10++2β3 - 60 \beta_{15} + 20 \beta_{14} - 20 \beta_{13} + 5 \beta_{12} + 5 \beta_{11} - 111 \beta_{10} + \cdots + 2 \beta_{3} Copy content Toggle raw display
ν6\nu^{6}== 80β14+80β13+27β1227β11+86β786β6+92β5+653 80 \beta_{14} + 80 \beta_{13} + 27 \beta_{12} - 27 \beta_{11} + 86 \beta_{7} - 86 \beta_{6} + 92 \beta_{5} + \cdots - 653 Copy content Toggle raw display
ν7\nu^{7}== 1001β15335β14+335β13119β12119β11+66β3 1001 \beta_{15} - 335 \beta_{14} + 335 \beta_{13} - 119 \beta_{12} - 119 \beta_{11} + \cdots - 66 \beta_{3} Copy content Toggle raw display
ν8\nu^{8}== 1336β141336β13520β12+520β111472β7+1472β6++9269 - 1336 \beta_{14} - 1336 \beta_{13} - 520 \beta_{12} + 520 \beta_{11} - 1472 \beta_{7} + 1472 \beta_{6} + \cdots + 9269 Copy content Toggle raw display
ν9\nu^{9}== 15930β15+5370β145370β13+2160β12+2160β11++1344β3 - 15930 \beta_{15} + 5370 \beta_{14} - 5370 \beta_{13} + 2160 \beta_{12} + 2160 \beta_{11} + \cdots + 1344 \beta_{3} Copy content Toggle raw display
ν10\nu^{10}== 21300β14+21300β13+8874β128874β11+23612β7+137957 21300 \beta_{14} + 21300 \beta_{13} + 8874 \beta_{12} - 8874 \beta_{11} + 23612 \beta_{7} + \cdots - 137957 Copy content Toggle raw display
ν11\nu^{11}== 249381β1584511β14+84511β1335838β1235838β11+23412β3 249381 \beta_{15} - 84511 \beta_{14} + 84511 \beta_{13} - 35838 \beta_{12} - 35838 \beta_{11} + \cdots - 23412 \beta_{3} Copy content Toggle raw display
ν12\nu^{12}== 333892β14333892β13143761β12+143761β11370284β7++2097467 - 333892 \beta_{14} - 333892 \beta_{13} - 143761 \beta_{12} + 143761 \beta_{11} - 370284 \beta_{7} + \cdots + 2097467 Copy content Toggle raw display
ν13\nu^{13}== 3878186β15+1318234β141318234β13+572741β12++382610β3 - 3878186 \beta_{15} + 1318234 \beta_{14} - 1318234 \beta_{13} + 572741 \beta_{12} + \cdots + 382610 \beta_{3} Copy content Toggle raw display
ν14\nu^{14}== 5196420β14+5196420β13+2273585β122273585β11+5757826β7+32193153 5196420 \beta_{14} + 5196420 \beta_{13} + 2273585 \beta_{12} - 2273585 \beta_{11} + 5757826 \beta_{7} + \cdots - 32193153 Copy content Toggle raw display
ν15\nu^{15}== 60135483β1520472917β14+20472917β138998097β12+6075262β3 60135483 \beta_{15} - 20472917 \beta_{14} + 20472917 \beta_{13} - 8998097 \beta_{12} + \cdots - 6075262 \beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 β10-\beta_{10} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1945.1
0.703701i
0.631533i
3.93284i
0.536261i
2.53626i
1.93284i
1.36847i
2.70370i
0.703701i
0.631533i
3.93284i
0.536261i
2.53626i
1.93284i
1.36847i
2.70370i
0 0 0 −2.45467 + 2.45467i 0 −1.75980 1.97563i 0 0 0
1945.2 0 0 0 −1.64651 + 1.64651i 0 −0.468972 + 2.60386i 0 0 0
1945.3 0 0 0 −1.32637 + 1.32637i 0 −2.51586 0.818817i 0 0 0
1945.4 0 0 0 −0.0659529 + 0.0659529i 0 2.36200 1.19204i 0 0 0
1945.5 0 0 0 0.0659529 0.0659529i 0 1.19204 2.36200i 0 0 0
1945.6 0 0 0 1.32637 1.32637i 0 0.818817 + 2.51586i 0 0 0
1945.7 0 0 0 1.64651 1.64651i 0 −2.60386 + 0.468972i 0 0 0
1945.8 0 0 0 2.45467 2.45467i 0 1.97563 + 1.75980i 0 0 0
2449.1 0 0 0 −2.45467 2.45467i 0 −1.75980 + 1.97563i 0 0 0
2449.2 0 0 0 −1.64651 1.64651i 0 −0.468972 2.60386i 0 0 0
2449.3 0 0 0 −1.32637 1.32637i 0 −2.51586 + 0.818817i 0 0 0
2449.4 0 0 0 −0.0659529 0.0659529i 0 2.36200 + 1.19204i 0 0 0
2449.5 0 0 0 0.0659529 + 0.0659529i 0 1.19204 + 2.36200i 0 0 0
2449.6 0 0 0 1.32637 + 1.32637i 0 0.818817 2.51586i 0 0 0
2449.7 0 0 0 1.64651 + 1.64651i 0 −2.60386 0.468972i 0 0 0
2449.8 0 0 0 2.45467 + 2.45467i 0 1.97563 1.75980i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1945.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
13.d odd 4 1 inner
91.i even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.bi.c 16
3.b odd 2 1 364.2.n.a 16
7.b odd 2 1 inner 3276.2.bi.c 16
13.d odd 4 1 inner 3276.2.bi.c 16
21.c even 2 1 364.2.n.a 16
39.f even 4 1 364.2.n.a 16
91.i even 4 1 inner 3276.2.bi.c 16
273.o odd 4 1 364.2.n.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.n.a 16 3.b odd 2 1
364.2.n.a 16 21.c even 2 1
364.2.n.a 16 39.f even 4 1
364.2.n.a 16 273.o odd 4 1
3276.2.bi.c 16 1.a even 1 1 trivial
3276.2.bi.c 16 7.b odd 2 1 inner
3276.2.bi.c 16 13.d odd 4 1 inner
3276.2.bi.c 16 91.i even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]):

T516+187T512+6431T58+52853T54+4 T_{5}^{16} + 187T_{5}^{12} + 6431T_{5}^{8} + 52853T_{5}^{4} + 4 Copy content Toggle raw display
T1916+1767T1912+920035T198+157342549T194+3262922884 T_{19}^{16} + 1767T_{19}^{12} + 920035T_{19}^{8} + 157342549T_{19}^{4} + 3262922884 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16+187T12++4 T^{16} + 187 T^{12} + \cdots + 4 Copy content Toggle raw display
77 T16+2T15++5764801 T^{16} + 2 T^{15} + \cdots + 5764801 Copy content Toggle raw display
1111 (T8+6T7++1156)2 (T^{8} + 6 T^{7} + \cdots + 1156)^{2} Copy content Toggle raw display
1313 T16++815730721 T^{16} + \cdots + 815730721 Copy content Toggle raw display
1717 (T814T6+54T4++8)2 (T^{8} - 14 T^{6} + 54 T^{4} + \cdots + 8)^{2} Copy content Toggle raw display
1919 T16++3262922884 T^{16} + \cdots + 3262922884 Copy content Toggle raw display
2323 (T8+83T6++484)2 (T^{8} + 83 T^{6} + \cdots + 484)^{2} Copy content Toggle raw display
2929 (T4+5T33T2+22)4 (T^{4} + 5 T^{3} - 3 T^{2} + \cdots - 22)^{4} Copy content Toggle raw display
3131 T16+1347T12++334084 T^{16} + 1347 T^{12} + \cdots + 334084 Copy content Toggle raw display
3737 (T874T5++784996)2 (T^{8} - 74 T^{5} + \cdots + 784996)^{2} Copy content Toggle raw display
4141 T16++14178141184 T^{16} + \cdots + 14178141184 Copy content Toggle raw display
4343 (T8+183T6++391876)2 (T^{8} + 183 T^{6} + \cdots + 391876)^{2} Copy content Toggle raw display
4747 T16++1488209686084 T^{16} + \cdots + 1488209686084 Copy content Toggle raw display
5353 (T4+7T3++2074)4 (T^{4} + 7 T^{3} + \cdots + 2074)^{4} Copy content Toggle raw display
5959 T16++78261181504 T^{16} + \cdots + 78261181504 Copy content Toggle raw display
6161 (T8+196T6++86528)2 (T^{8} + 196 T^{6} + \cdots + 86528)^{2} Copy content Toggle raw display
6767 (T84T7++633616)2 (T^{8} - 4 T^{7} + \cdots + 633616)^{2} Copy content Toggle raw display
7171 (T82T7++502566724)2 (T^{8} - 2 T^{7} + \cdots + 502566724)^{2} Copy content Toggle raw display
7373 T16+1423T12++521284 T^{16} + 1423 T^{12} + \cdots + 521284 Copy content Toggle raw display
7979 (T4T365T2++724)4 (T^{4} - T^{3} - 65 T^{2} + \cdots + 724)^{4} Copy content Toggle raw display
8383 T16++59341934404 T^{16} + \cdots + 59341934404 Copy content Toggle raw display
8989 T16++77940681873604 T^{16} + \cdots + 77940681873604 Copy content Toggle raw display
9797 T16++408528258774724 T^{16} + \cdots + 408528258774724 Copy content Toggle raw display
show more
show less