L(s) = 1 | + (1.64 − 1.64i)5-s + (−2.60 + 0.468i)7-s + (2.25 − 2.25i)11-s + (−2.84 + 2.21i)13-s + 0.368·17-s + (−3.97 + 3.97i)19-s − 1.42i·23-s − 0.421i·25-s − 4.07·29-s + (−1.27 + 1.27i)31-s + (−3.51 + 5.05i)35-s + (−2.46 + 2.46i)37-s + (−6.19 + 6.19i)41-s − 2.85i·43-s + (−1.71 − 1.71i)47-s + ⋯ |
L(s) = 1 | + (0.736 − 0.736i)5-s + (−0.984 + 0.177i)7-s + (0.680 − 0.680i)11-s + (−0.789 + 0.613i)13-s + 0.0893·17-s + (−0.912 + 0.912i)19-s − 0.296i·23-s − 0.0843i·25-s − 0.756·29-s + (−0.229 + 0.229i)31-s + (−0.594 + 0.855i)35-s + (−0.405 + 0.405i)37-s + (−0.966 + 0.966i)41-s − 0.436i·43-s + (−0.250 − 0.250i)47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(−0.518−0.855i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(−0.518−0.855i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
−0.518−0.855i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1945,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), −0.518−0.855i)
|
Particular Values
L(1) |
≈ |
0.6045618199 |
L(21) |
≈ |
0.6045618199 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.60−0.468i)T |
| 13 | 1+(2.84−2.21i)T |
good | 5 | 1+(−1.64+1.64i)T−5iT2 |
| 11 | 1+(−2.25+2.25i)T−11iT2 |
| 17 | 1−0.368T+17T2 |
| 19 | 1+(3.97−3.97i)T−19iT2 |
| 23 | 1+1.42iT−23T2 |
| 29 | 1+4.07T+29T2 |
| 31 | 1+(1.27−1.27i)T−31iT2 |
| 37 | 1+(2.46−2.46i)T−37iT2 |
| 41 | 1+(6.19−6.19i)T−41iT2 |
| 43 | 1+2.85iT−43T2 |
| 47 | 1+(1.71+1.71i)T+47iT2 |
| 53 | 1−5.15T+53T2 |
| 59 | 1+(0.539+0.539i)T+59iT2 |
| 61 | 1−8.98iT−61T2 |
| 67 | 1+(5.51+5.51i)T+67iT2 |
| 71 | 1+(−6.96−6.96i)T+71iT2 |
| 73 | 1+(−3.21−3.21i)T+73iT2 |
| 79 | 1+3.28T+79T2 |
| 83 | 1+(12.1−12.1i)T−83iT2 |
| 89 | 1+(6.35+6.35i)T+89iT2 |
| 97 | 1+(−3.00+3.00i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.809117169639859994728435471162, −8.503644223424458798000779879142, −7.25322628025316920617260902607, −6.54879536357701514934449265830, −5.89927177043033493503594977233, −5.22239853477948136729742404905, −4.20346899378554503326790724231, −3.41256220261119889901651912788, −2.29236111145540152207166822811, −1.34034128461277982605989460540,
0.17402810807337805389116016637, 1.88959479774717505928039692866, 2.67779117988115777220894619554, 3.54199403361136348400901764358, 4.48333763260048803039153956274, 5.49491971659226126620168401340, 6.23717558610037697929125270436, 6.95022577926228565574974265842, 7.30630436342463778477432584569, 8.488155150230438463014815230766