L(s) = 1 | + 1.46i·5-s + (−0.866 + 0.5i)7-s + (−2.38 − 1.37i)11-s + (3.56 + 0.531i)13-s + (−2.39 − 4.15i)17-s + (−1.70 + 0.985i)19-s + (1.46 − 2.54i)23-s + 2.85·25-s + (−2.73 + 4.73i)29-s + 3.90i·31-s + (−0.733 − 1.26i)35-s + (1.87 + 1.08i)37-s + (8.18 + 4.72i)41-s + (5.80 + 10.0i)43-s + 10.3i·47-s + ⋯ |
L(s) = 1 | + 0.655i·5-s + (−0.327 + 0.188i)7-s + (−0.718 − 0.414i)11-s + (0.989 + 0.147i)13-s + (−0.582 − 1.00i)17-s + (−0.391 + 0.226i)19-s + (0.306 − 0.530i)23-s + 0.570·25-s + (−0.507 + 0.879i)29-s + 0.700i·31-s + (−0.123 − 0.214i)35-s + (0.308 + 0.178i)37-s + (1.27 + 0.737i)41-s + (0.885 + 1.53i)43-s + 1.51i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.378 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.161438428\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.161438428\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (-3.56 - 0.531i)T \) |
good | 5 | \( 1 - 1.46iT - 5T^{2} \) |
| 11 | \( 1 + (2.38 + 1.37i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.39 + 4.15i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.70 - 0.985i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.46 + 2.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.73 - 4.73i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.90iT - 31T^{2} \) |
| 37 | \( 1 + (-1.87 - 1.08i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.18 - 4.72i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.80 - 10.0i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 10.3iT - 47T^{2} \) |
| 53 | \( 1 + 1.24T + 53T^{2} \) |
| 59 | \( 1 + (3.95 - 2.28i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.19 + 7.27i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.25 + 1.87i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (8.58 - 4.95i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.93iT - 73T^{2} \) |
| 79 | \( 1 + 12.8T + 79T^{2} \) |
| 83 | \( 1 - 0.811iT - 83T^{2} \) |
| 89 | \( 1 + (-8.38 - 4.83i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.23 - 4.75i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.995350266734057407002171131420, −8.085809484800860141392277661104, −7.39129684463666566995775082474, −6.49413872011367769765292562187, −6.08813398017682716179804700863, −5.04713928489105187420946033434, −4.23481704709797503130528483120, −3.03731812278832047250876919517, −2.71215053159404284731625829394, −1.20332869589576936635470190648,
0.37625078260148654967251345728, 1.66935938057994066818196207646, 2.68313450375786750735177026297, 3.90296207928110072006215359191, 4.36808803087003196684841962014, 5.52447426511927613764613010924, 5.97522350671891982157732689048, 6.99650270430023907907683882437, 7.68300201746910111997818293582, 8.559642346249128106735540552189