Properties

Label 2-3276-13.4-c1-0-6
Degree 22
Conductor 32763276
Sign 0.3780.925i-0.378 - 0.925i
Analytic cond. 26.158926.1589
Root an. cond. 5.114585.11458
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.46i·5-s + (−0.866 + 0.5i)7-s + (−2.38 − 1.37i)11-s + (3.56 + 0.531i)13-s + (−2.39 − 4.15i)17-s + (−1.70 + 0.985i)19-s + (1.46 − 2.54i)23-s + 2.85·25-s + (−2.73 + 4.73i)29-s + 3.90i·31-s + (−0.733 − 1.26i)35-s + (1.87 + 1.08i)37-s + (8.18 + 4.72i)41-s + (5.80 + 10.0i)43-s + 10.3i·47-s + ⋯
L(s)  = 1  + 0.655i·5-s + (−0.327 + 0.188i)7-s + (−0.718 − 0.414i)11-s + (0.989 + 0.147i)13-s + (−0.582 − 1.00i)17-s + (−0.391 + 0.226i)19-s + (0.306 − 0.530i)23-s + 0.570·25-s + (−0.507 + 0.879i)29-s + 0.700i·31-s + (−0.123 − 0.214i)35-s + (0.308 + 0.178i)37-s + (1.27 + 0.737i)41-s + (0.885 + 1.53i)43-s + 1.51i·47-s + ⋯

Functional equation

Λ(s)=(3276s/2ΓC(s)L(s)=((0.3780.925i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.378 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(3276s/2ΓC(s+1/2)L(s)=((0.3780.925i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 32763276    =    22327132^{2} \cdot 3^{2} \cdot 7 \cdot 13
Sign: 0.3780.925i-0.378 - 0.925i
Analytic conductor: 26.158926.1589
Root analytic conductor: 5.114585.11458
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ3276(2773,)\chi_{3276} (2773, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3276, ( :1/2), 0.3780.925i)(2,\ 3276,\ (\ :1/2),\ -0.378 - 0.925i)

Particular Values

L(1)L(1) \approx 1.1614384281.161438428
L(12)L(\frac12) \approx 1.1614384281.161438428
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
13 1+(3.560.531i)T 1 + (-3.56 - 0.531i)T
good5 11.46iT5T2 1 - 1.46iT - 5T^{2}
11 1+(2.38+1.37i)T+(5.5+9.52i)T2 1 + (2.38 + 1.37i)T + (5.5 + 9.52i)T^{2}
17 1+(2.39+4.15i)T+(8.5+14.7i)T2 1 + (2.39 + 4.15i)T + (-8.5 + 14.7i)T^{2}
19 1+(1.700.985i)T+(9.516.4i)T2 1 + (1.70 - 0.985i)T + (9.5 - 16.4i)T^{2}
23 1+(1.46+2.54i)T+(11.519.9i)T2 1 + (-1.46 + 2.54i)T + (-11.5 - 19.9i)T^{2}
29 1+(2.734.73i)T+(14.525.1i)T2 1 + (2.73 - 4.73i)T + (-14.5 - 25.1i)T^{2}
31 13.90iT31T2 1 - 3.90iT - 31T^{2}
37 1+(1.871.08i)T+(18.5+32.0i)T2 1 + (-1.87 - 1.08i)T + (18.5 + 32.0i)T^{2}
41 1+(8.184.72i)T+(20.5+35.5i)T2 1 + (-8.18 - 4.72i)T + (20.5 + 35.5i)T^{2}
43 1+(5.8010.0i)T+(21.5+37.2i)T2 1 + (-5.80 - 10.0i)T + (-21.5 + 37.2i)T^{2}
47 110.3iT47T2 1 - 10.3iT - 47T^{2}
53 1+1.24T+53T2 1 + 1.24T + 53T^{2}
59 1+(3.952.28i)T+(29.551.0i)T2 1 + (3.95 - 2.28i)T + (29.5 - 51.0i)T^{2}
61 1+(4.19+7.27i)T+(30.5+52.8i)T2 1 + (4.19 + 7.27i)T + (-30.5 + 52.8i)T^{2}
67 1+(3.25+1.87i)T+(33.5+58.0i)T2 1 + (3.25 + 1.87i)T + (33.5 + 58.0i)T^{2}
71 1+(8.584.95i)T+(35.561.4i)T2 1 + (8.58 - 4.95i)T + (35.5 - 61.4i)T^{2}
73 1+5.93iT73T2 1 + 5.93iT - 73T^{2}
79 1+12.8T+79T2 1 + 12.8T + 79T^{2}
83 10.811iT83T2 1 - 0.811iT - 83T^{2}
89 1+(8.384.83i)T+(44.5+77.0i)T2 1 + (-8.38 - 4.83i)T + (44.5 + 77.0i)T^{2}
97 1+(8.234.75i)T+(48.584.0i)T2 1 + (8.23 - 4.75i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.995350266734057407002171131420, −8.085809484800860141392277661104, −7.39129684463666566995775082474, −6.49413872011367769765292562187, −6.08813398017682716179804700863, −5.04713928489105187420946033434, −4.23481704709797503130528483120, −3.03731812278832047250876919517, −2.71215053159404284731625829394, −1.20332869589576936635470190648, 0.37625078260148654967251345728, 1.66935938057994066818196207646, 2.68313450375786750735177026297, 3.90296207928110072006215359191, 4.36808803087003196684841962014, 5.52447426511927613764613010924, 5.97522350671891982157732689048, 6.99650270430023907907683882437, 7.68300201746910111997818293582, 8.559642346249128106735540552189

Graph of the ZZ-function along the critical line