Properties

Label 3276.2.cf.c
Level 32763276
Weight 22
Character orbit 3276.cf
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1765,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1765");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.cf (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+38x14+587x12+4762x10+21849x8+56552x6+76456x4+42624x2+2704 x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β13+β12+β2)q5+(β3β2)q7+(β10β8+2β3)q11+(β15+β13β12++2)q13++(2β15+β13+2)q97+O(q100) q + ( - \beta_{13} + \beta_{12} + \beta_{2}) q^{5} + ( - \beta_{3} - \beta_{2}) q^{7} + (\beta_{10} - \beta_{8} + \cdots - 2 \beta_{3}) q^{11} + ( - \beta_{15} + \beta_{13} - \beta_{12} + \cdots + 2) q^{13}+ \cdots + ( - 2 \beta_{15} + \beta_{13} + \cdots - 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q6q11+10q132q1744q25+22q29+6q35+12q3736q41+6q43+8q498q53+2q55+18q59+4q61+30q65+24q6736q71+24q77+42q97+O(q100) 16 q - 6 q^{11} + 10 q^{13} - 2 q^{17} - 44 q^{25} + 22 q^{29} + 6 q^{35} + 12 q^{37} - 36 q^{41} + 6 q^{43} + 8 q^{49} - 8 q^{53} + 2 q^{55} + 18 q^{59} + 4 q^{61} + 30 q^{65} + 24 q^{67} - 36 q^{71} + 24 q^{77}+ \cdots - 42 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+38x14+587x12+4762x10+21849x8+56552x6+76456x4+42624x2+2704 x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 : Copy content Toggle raw display

β1\beta_{1}== (125ν14+4204ν12+55047ν10+355436ν8+1184157ν6+1944230ν4++104520)/70144 ( 125 \nu^{14} + 4204 \nu^{12} + 55047 \nu^{10} + 355436 \nu^{8} + 1184157 \nu^{6} + 1944230 \nu^{4} + \cdots + 104520 ) / 70144 Copy content Toggle raw display
β2\beta_{2}== (1005ν1534940ν13480631ν113354588ν912716909ν7+8550920ν)/1823744 ( - 1005 \nu^{15} - 34940 \nu^{13} - 480631 \nu^{11} - 3354588 \nu^{9} - 12716909 \nu^{7} + \cdots - 8550920 \nu ) / 1823744 Copy content Toggle raw display
β3\beta_{3}== (1005ν1556472ν14+34940ν131972672ν12+480631ν11+53684800)/3647488 ( 1005 \nu^{15} - 56472 \nu^{14} + 34940 \nu^{13} - 1972672 \nu^{12} + 480631 \nu^{11} + \cdots - 53684800 ) / 3647488 Copy content Toggle raw display
β4\beta_{4}== (29ν141012ν1213879ν1094948ν8338349ν6588174ν4+25064)/1024 ( - 29 \nu^{14} - 1012 \nu^{12} - 13879 \nu^{10} - 94948 \nu^{8} - 338349 \nu^{6} - 588174 \nu^{4} + \cdots - 25064 ) / 1024 Copy content Toggle raw display
β5\beta_{5}== (29ν14+1012ν12+13879ν10+94948ν8+338349ν6+588174ν4++25064)/1024 ( 29 \nu^{14} + 1012 \nu^{12} + 13879 \nu^{10} + 94948 \nu^{8} + 338349 \nu^{6} + 588174 \nu^{4} + \cdots + 25064 ) / 1024 Copy content Toggle raw display
β6\beta_{6}== (6205ν1537973ν14205552ν131333644ν122636655ν11+33629960)/1823744 ( - 6205 \nu^{15} - 37973 \nu^{14} - 205552 \nu^{13} - 1333644 \nu^{12} - 2636655 \nu^{11} + \cdots - 33629960 ) / 1823744 Copy content Toggle raw display
β7\beta_{7}== (14471ν1526962ν14505724ν13935168ν126952053ν11+16802032)/1823744 ( - 14471 \nu^{15} - 26962 \nu^{14} - 505724 \nu^{13} - 935168 \nu^{12} - 6952053 \nu^{11} + \cdots - 16802032 ) / 1823744 Copy content Toggle raw display
β8\beta_{8}== (15621ν15+56823ν14+542976ν13+1976156ν12+7402151ν11++49562552)/1823744 ( 15621 \nu^{15} + 56823 \nu^{14} + 542976 \nu^{13} + 1976156 \nu^{12} + 7402151 \nu^{11} + \cdots + 49562552 ) / 1823744 Copy content Toggle raw display
β9\beta_{9}== (241ν158404ν13115155ν11786788ν92796961ν74831958ν5+13312)/26624 ( - 241 \nu^{15} - 8404 \nu^{13} - 115155 \nu^{11} - 786788 \nu^{9} - 2796961 \nu^{7} - 4831958 \nu^{5} + \cdots - 13312 ) / 26624 Copy content Toggle raw display
β10\beta_{10}== (15621ν1556823ν14+542976ν131976156ν12+7402151ν11+49562552)/1823744 ( 15621 \nu^{15} - 56823 \nu^{14} + 542976 \nu^{13} - 1976156 \nu^{12} + 7402151 \nu^{11} + \cdots - 49562552 ) / 1823744 Copy content Toggle raw display
β11\beta_{11}== (19521ν1539260ν14+686964ν131365416ν12+9521411ν11+33180992)/1823744 ( 19521 \nu^{15} - 39260 \nu^{14} + 686964 \nu^{13} - 1365416 \nu^{12} + 9521411 \nu^{11} + \cdots - 33180992 ) / 1823744 Copy content Toggle raw display
β12\beta_{12}== (25726ν1577233ν14892516ν132699060ν1212158066ν11+66810952)/1823744 ( - 25726 \nu^{15} - 77233 \nu^{14} - 892516 \nu^{13} - 2699060 \nu^{12} - 12158066 \nu^{11} + \cdots - 66810952 ) / 1823744 Copy content Toggle raw display
β13\beta_{13}== (25726ν1577233ν14+892516ν132699060ν12+12158066ν11+66810952)/1823744 ( 25726 \nu^{15} - 77233 \nu^{14} + 892516 \nu^{13} - 2699060 \nu^{12} + 12158066 \nu^{11} + \cdots - 66810952 ) / 1823744 Copy content Toggle raw display
β14\beta_{14}== (29241ν151625ν141021276ν1354652ν1214031675ν11+1358760)/1823744 ( - 29241 \nu^{15} - 1625 \nu^{14} - 1021276 \nu^{13} - 54652 \nu^{12} - 14031675 \nu^{11} + \cdots - 1358760 ) / 1823744 Copy content Toggle raw display
β15\beta_{15}== (30092ν15+29861ν14+1048700ν13+1040988ν12+14354204ν11++32760520)/1823744 ( 30092 \nu^{15} + 29861 \nu^{14} + 1048700 \nu^{13} + 1040988 \nu^{12} + 14354204 \nu^{11} + \cdots + 32760520 ) / 1823744 Copy content Toggle raw display
ν\nu== β5+β4 \beta_{5} + \beta_{4} Copy content Toggle raw display
ν2\nu^{2}== β15β10+β7+2β3+β2β15 \beta_{15} - \beta_{10} + \beta_{7} + 2\beta_{3} + \beta_{2} - \beta _1 - 5 Copy content Toggle raw display
ν3\nu^{3}== 2β14+β132β12+β11+2β9+β66β56β4++1 2 \beta_{14} + \beta_{13} - 2 \beta_{12} + \beta_{11} + 2 \beta_{9} + \beta_{6} - 6 \beta_{5} - 6 \beta_{4} + \cdots + 1 Copy content Toggle raw display
ν4\nu^{4}== 10β15+β13+2β12+β11+9β10+β810β7++38 - 10 \beta_{15} + \beta_{13} + 2 \beta_{12} + \beta_{11} + 9 \beta_{10} + \beta_{8} - 10 \beta_{7} + \cdots + 38 Copy content Toggle raw display
ν5\nu^{5}== 2β1526β1412β13+25β1213β11β1022β9+11 2 \beta_{15} - 26 \beta_{14} - 12 \beta_{13} + 25 \beta_{12} - 13 \beta_{11} - \beta_{10} - 22 \beta_{9} + \cdots - 11 Copy content Toggle raw display
ν6\nu^{6}== 99β1515β1328β1213β1182β1017β8+331 99 \beta_{15} - 15 \beta_{13} - 28 \beta_{12} - 13 \beta_{11} - 82 \beta_{10} - 17 \beta_{8} + \cdots - 331 Copy content Toggle raw display
ν7\nu^{7}== 28β15+280β14+123β13265β12+142β11+27β10++124 - 28 \beta_{15} + 280 \beta_{14} + 123 \beta_{13} - 265 \beta_{12} + 142 \beta_{11} + 27 \beta_{10} + \cdots + 124 Copy content Toggle raw display
ν8\nu^{8}== 977β15+188β13+320β12+132β11+771β10+206β8++3065 - 977 \beta_{15} + 188 \beta_{13} + 320 \beta_{12} + 132 \beta_{11} + 771 \beta_{10} + 206 \beta_{8} + \cdots + 3065 Copy content Toggle raw display
ν9\nu^{9}== 312β152826β141223β13+2708β121485β11460β10+1463 312 \beta_{15} - 2826 \beta_{14} - 1223 \beta_{13} + 2708 \beta_{12} - 1485 \beta_{11} - 460 \beta_{10} + \cdots - 1463 Copy content Toggle raw display
ν10\nu^{10}== 9654β152207β133480β121273β117405β102249β8+29296 9654 \beta_{15} - 2207 \beta_{13} - 3480 \beta_{12} - 1273 \beta_{11} - 7405 \beta_{10} - 2249 \beta_{8} + \cdots - 29296 Copy content Toggle raw display
ν11\nu^{11}== 3360β15+27686β14+12158β1327499β12+15341β11++17351 - 3360 \beta_{15} + 27686 \beta_{14} + 12158 \beta_{13} - 27499 \beta_{12} + 15341 \beta_{11} + \cdots + 17351 Copy content Toggle raw display
ν12\nu^{12}== 95721β15+24959β13+37294β12+12335β11+72152β10++285301 - 95721 \beta_{15} + 24959 \beta_{13} + 37294 \beta_{12} + 12335 \beta_{11} + 72152 \beta_{10} + \cdots + 285301 Copy content Toggle raw display
ν13\nu^{13}== 36406β15267484β14121781β13+279755β12157974β11+202962 36406 \beta_{15} - 267484 \beta_{14} - 121781 \beta_{13} + 279755 \beta_{12} - 157974 \beta_{11} + \cdots - 202962 Copy content Toggle raw display
ν14\nu^{14}== 953123β15275542β13397536β12121994β11710589β10+2812765 953123 \beta_{15} - 275542 \beta_{13} - 397536 \beta_{12} - 121994 \beta_{11} - 710589 \beta_{10} + \cdots - 2812765 Copy content Toggle raw display
ν15\nu^{15}== 397768β15+2570258β14+1230119β132856320β12+1626201β11++2331497 - 397768 \beta_{15} + 2570258 \beta_{14} + 1230119 \beta_{13} - 2856320 \beta_{12} + 1626201 \beta_{11} + \cdots + 2331497 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 β9-\beta_{9} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1765.1
2.42977i
3.23100i
1.17707i
0.268953i
2.98100i
1.75101i
1.77673i
2.25607i
2.25607i
1.77673i
1.75101i
2.98100i
0.268953i
1.17707i
3.23100i
2.42977i
0 0 0 3.63781i 0 −0.866025 0.500000i 0 0 0
1765.2 0 0 0 3.14769i 0 0.866025 + 0.500000i 0 0 0
1765.3 0 0 0 1.46614i 0 −0.866025 0.500000i 0 0 0
1765.4 0 0 0 1.35585i 0 0.866025 + 0.500000i 0 0 0
1765.5 0 0 0 0.118179i 0 0.866025 + 0.500000i 0 0 0
1765.6 0 0 0 1.38536i 0 0.866025 + 0.500000i 0 0 0
1765.7 0 0 0 3.82804i 0 −0.866025 0.500000i 0 0 0
1765.8 0 0 0 4.27591i 0 −0.866025 0.500000i 0 0 0
2773.1 0 0 0 4.27591i 0 −0.866025 + 0.500000i 0 0 0
2773.2 0 0 0 3.82804i 0 −0.866025 + 0.500000i 0 0 0
2773.3 0 0 0 1.38536i 0 0.866025 0.500000i 0 0 0
2773.4 0 0 0 0.118179i 0 0.866025 0.500000i 0 0 0
2773.5 0 0 0 1.35585i 0 0.866025 0.500000i 0 0 0
2773.6 0 0 0 1.46614i 0 −0.866025 + 0.500000i 0 0 0
2773.7 0 0 0 3.14769i 0 0.866025 0.500000i 0 0 0
2773.8 0 0 0 3.63781i 0 −0.866025 + 0.500000i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1765.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.cf.c 16
3.b odd 2 1 364.2.u.a 16
12.b even 2 1 1456.2.cc.f 16
13.e even 6 1 inner 3276.2.cf.c 16
21.c even 2 1 2548.2.u.c 16
21.g even 6 1 2548.2.bb.c 16
21.g even 6 1 2548.2.bq.c 16
21.h odd 6 1 2548.2.bb.d 16
21.h odd 6 1 2548.2.bq.e 16
39.h odd 6 1 364.2.u.a 16
39.h odd 6 1 4732.2.g.k 16
39.i odd 6 1 4732.2.g.k 16
39.k even 12 1 4732.2.a.s 8
39.k even 12 1 4732.2.a.t 8
156.r even 6 1 1456.2.cc.f 16
273.u even 6 1 2548.2.u.c 16
273.x odd 6 1 2548.2.bb.d 16
273.y even 6 1 2548.2.bb.c 16
273.bp odd 6 1 2548.2.bq.e 16
273.br even 6 1 2548.2.bq.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.u.a 16 3.b odd 2 1
364.2.u.a 16 39.h odd 6 1
1456.2.cc.f 16 12.b even 2 1
1456.2.cc.f 16 156.r even 6 1
2548.2.u.c 16 21.c even 2 1
2548.2.u.c 16 273.u even 6 1
2548.2.bb.c 16 21.g even 6 1
2548.2.bb.c 16 273.y even 6 1
2548.2.bb.d 16 21.h odd 6 1
2548.2.bb.d 16 273.x odd 6 1
2548.2.bq.c 16 21.g even 6 1
2548.2.bq.c 16 273.br even 6 1
2548.2.bq.e 16 21.h odd 6 1
2548.2.bq.e 16 273.bp odd 6 1
3276.2.cf.c 16 1.a even 1 1 trivial
3276.2.cf.c 16 13.e even 6 1 inner
4732.2.a.s 8 39.k even 12 1
4732.2.a.t 8 39.k even 12 1
4732.2.g.k 16 39.h odd 6 1
4732.2.g.k 16 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T516+62T514+1505T512+18058T510+111420T58+339950T56++3721 T_{5}^{16} + 62 T_{5}^{14} + 1505 T_{5}^{12} + 18058 T_{5}^{10} + 111420 T_{5}^{8} + 339950 T_{5}^{6} + \cdots + 3721 acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16+62T14++3721 T^{16} + 62 T^{14} + \cdots + 3721 Copy content Toggle raw display
77 (T4T2+1)4 (T^{4} - T^{2} + 1)^{4} Copy content Toggle raw display
1111 T16++185722384 T^{16} + \cdots + 185722384 Copy content Toggle raw display
1313 T16++815730721 T^{16} + \cdots + 815730721 Copy content Toggle raw display
1717 T16+2T15++2982529 T^{16} + 2 T^{15} + \cdots + 2982529 Copy content Toggle raw display
1919 T16++1235663104 T^{16} + \cdots + 1235663104 Copy content Toggle raw display
2323 T16+92T14++88510464 T^{16} + 92 T^{14} + \cdots + 88510464 Copy content Toggle raw display
2929 T16++530426961 T^{16} + \cdots + 530426961 Copy content Toggle raw display
3131 T16++1643965037584 T^{16} + \cdots + 1643965037584 Copy content Toggle raw display
3737 T16++592240896 T^{16} + \cdots + 592240896 Copy content Toggle raw display
4141 T16++1637621852416 T^{16} + \cdots + 1637621852416 Copy content Toggle raw display
4343 T16++5967799496464 T^{16} + \cdots + 5967799496464 Copy content Toggle raw display
4747 T16++5725040896 T^{16} + \cdots + 5725040896 Copy content Toggle raw display
5353 (T8+4T7++117909)2 (T^{8} + 4 T^{7} + \cdots + 117909)^{2} Copy content Toggle raw display
5959 T16++119508624 T^{16} + \cdots + 119508624 Copy content Toggle raw display
6161 T16++1654989623296 T^{16} + \cdots + 1654989623296 Copy content Toggle raw display
6767 T16++62066753424 T^{16} + \cdots + 62066753424 Copy content Toggle raw display
7171 T16++7345574313984 T^{16} + \cdots + 7345574313984 Copy content Toggle raw display
7373 T16++89262317824 T^{16} + \cdots + 89262317824 Copy content Toggle raw display
7979 (T84T7+1070784)2 (T^{8} - 4 T^{7} + \cdots - 1070784)^{2} Copy content Toggle raw display
8383 T16+656T14++1971216 T^{16} + 656 T^{14} + \cdots + 1971216 Copy content Toggle raw display
8989 T16++33199755264 T^{16} + \cdots + 33199755264 Copy content Toggle raw display
9797 T16+42T15++44302336 T^{16} + 42 T^{15} + \cdots + 44302336 Copy content Toggle raw display
show more
show less