Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3276,2,Mod(1765,3276)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3276.1765");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3276.cf (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 364) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1765.1 |
|
0 | 0 | 0 | − | 3.63781i | 0 | −0.866025 | − | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.2 | 0 | 0 | 0 | − | 3.14769i | 0 | 0.866025 | + | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.3 | 0 | 0 | 0 | − | 1.46614i | 0 | −0.866025 | − | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.4 | 0 | 0 | 0 | − | 1.35585i | 0 | 0.866025 | + | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.5 | 0 | 0 | 0 | 0.118179i | 0 | 0.866025 | + | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.6 | 0 | 0 | 0 | 1.38536i | 0 | 0.866025 | + | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.7 | 0 | 0 | 0 | 3.82804i | 0 | −0.866025 | − | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1765.8 | 0 | 0 | 0 | 4.27591i | 0 | −0.866025 | − | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.1 | 0 | 0 | 0 | − | 4.27591i | 0 | −0.866025 | + | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.2 | 0 | 0 | 0 | − | 3.82804i | 0 | −0.866025 | + | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.3 | 0 | 0 | 0 | − | 1.38536i | 0 | 0.866025 | − | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.4 | 0 | 0 | 0 | − | 0.118179i | 0 | 0.866025 | − | 0.500000i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.5 | 0 | 0 | 0 | 1.35585i | 0 | 0.866025 | − | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.6 | 0 | 0 | 0 | 1.46614i | 0 | −0.866025 | + | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.7 | 0 | 0 | 0 | 3.14769i | 0 | 0.866025 | − | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2773.8 | 0 | 0 | 0 | 3.63781i | 0 | −0.866025 | + | 0.500000i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3276.2.cf.c | 16 | |
3.b | odd | 2 | 1 | 364.2.u.a | ✓ | 16 | |
12.b | even | 2 | 1 | 1456.2.cc.f | 16 | ||
13.e | even | 6 | 1 | inner | 3276.2.cf.c | 16 | |
21.c | even | 2 | 1 | 2548.2.u.c | 16 | ||
21.g | even | 6 | 1 | 2548.2.bb.c | 16 | ||
21.g | even | 6 | 1 | 2548.2.bq.c | 16 | ||
21.h | odd | 6 | 1 | 2548.2.bb.d | 16 | ||
21.h | odd | 6 | 1 | 2548.2.bq.e | 16 | ||
39.h | odd | 6 | 1 | 364.2.u.a | ✓ | 16 | |
39.h | odd | 6 | 1 | 4732.2.g.k | 16 | ||
39.i | odd | 6 | 1 | 4732.2.g.k | 16 | ||
39.k | even | 12 | 1 | 4732.2.a.s | 8 | ||
39.k | even | 12 | 1 | 4732.2.a.t | 8 | ||
156.r | even | 6 | 1 | 1456.2.cc.f | 16 | ||
273.u | even | 6 | 1 | 2548.2.u.c | 16 | ||
273.x | odd | 6 | 1 | 2548.2.bb.d | 16 | ||
273.y | even | 6 | 1 | 2548.2.bb.c | 16 | ||
273.bp | odd | 6 | 1 | 2548.2.bq.e | 16 | ||
273.br | even | 6 | 1 | 2548.2.bq.c | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
364.2.u.a | ✓ | 16 | 3.b | odd | 2 | 1 | |
364.2.u.a | ✓ | 16 | 39.h | odd | 6 | 1 | |
1456.2.cc.f | 16 | 12.b | even | 2 | 1 | ||
1456.2.cc.f | 16 | 156.r | even | 6 | 1 | ||
2548.2.u.c | 16 | 21.c | even | 2 | 1 | ||
2548.2.u.c | 16 | 273.u | even | 6 | 1 | ||
2548.2.bb.c | 16 | 21.g | even | 6 | 1 | ||
2548.2.bb.c | 16 | 273.y | even | 6 | 1 | ||
2548.2.bb.d | 16 | 21.h | odd | 6 | 1 | ||
2548.2.bb.d | 16 | 273.x | odd | 6 | 1 | ||
2548.2.bq.c | 16 | 21.g | even | 6 | 1 | ||
2548.2.bq.c | 16 | 273.br | even | 6 | 1 | ||
2548.2.bq.e | 16 | 21.h | odd | 6 | 1 | ||
2548.2.bq.e | 16 | 273.bp | odd | 6 | 1 | ||
3276.2.cf.c | 16 | 1.a | even | 1 | 1 | trivial | |
3276.2.cf.c | 16 | 13.e | even | 6 | 1 | inner | |
4732.2.a.s | 8 | 39.k | even | 12 | 1 | ||
4732.2.a.t | 8 | 39.k | even | 12 | 1 | ||
4732.2.g.k | 16 | 39.h | odd | 6 | 1 | ||
4732.2.g.k | 16 | 39.i | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .