Properties

Label 4732.2.a.s
Level 47324732
Weight 22
Character orbit 4732.a
Self dual yes
Analytic conductor 37.78537.785
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4732=227132 4732 = 2^{2} \cdot 7 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 37.785210236537.7852102365
Analytic rank: 11
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x819x62x5+113x4+40x3232x2136x+52 x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 364)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β51)q5q7+(β6β4+β2++2)q9+(β2β12)q11+(β7+2β6β5+1)q15++(β7+2β6+11)q99+O(q100) q - \beta_1 q^{3} + (\beta_{5} - 1) q^{5} - q^{7} + ( - \beta_{6} - \beta_{4} + \beta_{2} + \cdots + 2) q^{9} + ( - \beta_{2} - \beta_1 - 2) q^{11} + ( - \beta_{7} + 2 \beta_{6} - \beta_{5} + \cdots - 1) q^{15}+ \cdots + ( - \beta_{7} + 2 \beta_{6} + \cdots - 11) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q6q58q7+14q912q1112q15+2q176q19+22q256q27+22q2914q31+28q33+6q3512q374q41+6q4320q4542q47+80q99+O(q100) 8 q - 6 q^{5} - 8 q^{7} + 14 q^{9} - 12 q^{11} - 12 q^{15} + 2 q^{17} - 6 q^{19} + 22 q^{25} - 6 q^{27} + 22 q^{29} - 14 q^{31} + 28 q^{33} + 6 q^{35} - 12 q^{37} - 4 q^{41} + 6 q^{43} - 20 q^{45} - 42 q^{47}+ \cdots - 80 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x819x62x5+113x4+40x3232x2136x+52 x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (3ν7+6ν6+47ν588ν4193ν3+266ν2+270ν108)/4 ( -3\nu^{7} + 6\nu^{6} + 47\nu^{5} - 88\nu^{4} - 193\nu^{3} + 266\nu^{2} + 270\nu - 108 ) / 4 Copy content Toggle raw display
β3\beta_{3}== (2ν73ν632ν5+45ν4+138ν3137ν2194ν+52)/2 ( 2\nu^{7} - 3\nu^{6} - 32\nu^{5} + 45\nu^{4} + 138\nu^{3} - 137\nu^{2} - 194\nu + 52 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (4ν77ν664ν5+103ν4+274ν3309ν2388ν+114)/4 ( 4\nu^{7} - 7\nu^{6} - 64\nu^{5} + 103\nu^{4} + 274\nu^{3} - 309\nu^{2} - 388\nu + 114 ) / 4 Copy content Toggle raw display
β5\beta_{5}== (6ν7+9ν6+94ν5133ν4384ν3+391ν2+492ν154)/4 ( -6\nu^{7} + 9\nu^{6} + 94\nu^{5} - 133\nu^{4} - 384\nu^{3} + 391\nu^{2} + 492\nu - 154 ) / 4 Copy content Toggle raw display
β6\beta_{6}== (7ν7+13ν6+111ν5191ν4467ν3+571ν2+662ν202)/4 ( -7\nu^{7} + 13\nu^{6} + 111\nu^{5} - 191\nu^{4} - 467\nu^{3} + 571\nu^{2} + 662\nu - 202 ) / 4 Copy content Toggle raw display
β7\beta_{7}== 2ν74ν632ν5+59ν4+137ν3181ν2200ν+70 2\nu^{7} - 4\nu^{6} - 32\nu^{5} + 59\nu^{4} + 137\nu^{3} - 181\nu^{2} - 200\nu + 70 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6β4+β2+β1+5 -\beta_{6} - \beta_{4} + \beta_{2} + \beta _1 + 5 Copy content Toggle raw display
ν3\nu^{3}== β7+β5+β4+β32β2+6β1 -\beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} - 2\beta_{2} + 6\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 2β79β6β514β4+β3+11β2+9β1+37 2\beta_{7} - 9\beta_{6} - \beta_{5} - 14\beta_{4} + \beta_{3} + 11\beta_{2} + 9\beta _1 + 37 Copy content Toggle raw display
ν5\nu^{5}== 13β7+β6+12β5+11β4+13β329β2+44β112 -13\beta_{7} + \beta_{6} + 12\beta_{5} + 11\beta_{4} + 13\beta_{3} - 29\beta_{2} + 44\beta _1 - 12 Copy content Toggle raw display
ν6\nu^{6}== 28β782β615β5153β4+15β3+112β2+70β1+316 28\beta_{7} - 82\beta_{6} - 15\beta_{5} - 153\beta_{4} + 15\beta_{3} + 112\beta_{2} + 70\beta _1 + 316 Copy content Toggle raw display
ν7\nu^{7}== 142β7+27β6+123β5+124β4+140β3337β2+358β1234 -142\beta_{7} + 27\beta_{6} + 123\beta_{5} + 124\beta_{4} + 140\beta_{3} - 337\beta_{2} + 358\beta _1 - 234 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.98100
2.42977
2.25607
0.268953
−1.17707
−1.75101
−1.77673
−3.23100
0 −2.98100 0 0.118179 0 −1.00000 0 5.88638 0
1.2 0 −2.42977 0 3.63781 0 −1.00000 0 2.90380 0
1.3 0 −2.25607 0 −4.27591 0 −1.00000 0 2.08985 0
1.4 0 −0.268953 0 −1.35585 0 −1.00000 0 −2.92766 0
1.5 0 1.17707 0 1.46614 0 −1.00000 0 −1.61452 0
1.6 0 1.75101 0 1.38536 0 −1.00000 0 0.0660200 0
1.7 0 1.77673 0 −3.82804 0 −1.00000 0 0.156761 0
1.8 0 3.23100 0 −3.14769 0 −1.00000 0 7.43937 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4732.2.a.s 8
13.b even 2 1 4732.2.a.t 8
13.d odd 4 2 4732.2.g.k 16
13.f odd 12 2 364.2.u.a 16
39.k even 12 2 3276.2.cf.c 16
52.l even 12 2 1456.2.cc.f 16
91.w even 12 2 2548.2.bq.c 16
91.x odd 12 2 2548.2.bb.d 16
91.ba even 12 2 2548.2.bb.c 16
91.bc even 12 2 2548.2.u.c 16
91.bd odd 12 2 2548.2.bq.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.u.a 16 13.f odd 12 2
1456.2.cc.f 16 52.l even 12 2
2548.2.u.c 16 91.bc even 12 2
2548.2.bb.c 16 91.ba even 12 2
2548.2.bb.d 16 91.x odd 12 2
2548.2.bq.c 16 91.w even 12 2
2548.2.bq.e 16 91.bd odd 12 2
3276.2.cf.c 16 39.k even 12 2
4732.2.a.s 8 1.a even 1 1 trivial
4732.2.a.t 8 13.b even 2 1
4732.2.g.k 16 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4732))S_{2}^{\mathrm{new}}(\Gamma_0(4732)):

T3819T36+2T35+113T3440T33232T32+136T3+52 T_{3}^{8} - 19T_{3}^{6} + 2T_{3}^{5} + 113T_{3}^{4} - 40T_{3}^{3} - 232T_{3}^{2} + 136T_{3} + 52 Copy content Toggle raw display
T58+6T5713T56112T554T54+470T53+11T52524T5+61 T_{5}^{8} + 6T_{5}^{7} - 13T_{5}^{6} - 112T_{5}^{5} - 4T_{5}^{4} + 470T_{5}^{3} + 11T_{5}^{2} - 524T_{5} + 61 Copy content Toggle raw display
T118+12T117+15T116304T1151051T114+1368T113+8584T112+2192T1113628 T_{11}^{8} + 12T_{11}^{7} + 15T_{11}^{6} - 304T_{11}^{5} - 1051T_{11}^{4} + 1368T_{11}^{3} + 8584T_{11}^{2} + 2192T_{11} - 13628 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T819T6++52 T^{8} - 19 T^{6} + \cdots + 52 Copy content Toggle raw display
55 T8+6T7++61 T^{8} + 6 T^{7} + \cdots + 61 Copy content Toggle raw display
77 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
1111 T8+12T7+13628 T^{8} + 12 T^{7} + \cdots - 13628 Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T82T7+1727 T^{8} - 2 T^{7} + \cdots - 1727 Copy content Toggle raw display
1919 T8+6T7++35152 T^{8} + 6 T^{7} + \cdots + 35152 Copy content Toggle raw display
2323 T892T6+9408 T^{8} - 92 T^{6} + \cdots - 9408 Copy content Toggle raw display
2929 T822T7+23031 T^{8} - 22 T^{7} + \cdots - 23031 Copy content Toggle raw display
3131 T8+14T7+1282172 T^{8} + 14 T^{7} + \cdots - 1282172 Copy content Toggle raw display
3737 T8+12T7++24336 T^{8} + 12 T^{7} + \cdots + 24336 Copy content Toggle raw display
4141 T8+4T7++1279696 T^{8} + 4 T^{7} + \cdots + 1279696 Copy content Toggle raw display
4343 T86T7+2442908 T^{8} - 6 T^{7} + \cdots - 2442908 Copy content Toggle raw display
4747 T8+42T7++75664 T^{8} + 42 T^{7} + \cdots + 75664 Copy content Toggle raw display
5353 T84T7++117909 T^{8} - 4 T^{7} + \cdots + 117909 Copy content Toggle raw display
5959 T8+2T7++10932 T^{8} + 2 T^{7} + \cdots + 10932 Copy content Toggle raw display
6161 T8+4T7++1286464 T^{8} + 4 T^{7} + \cdots + 1286464 Copy content Toggle raw display
6767 T8+24T7+249132 T^{8} + 24 T^{7} + \cdots - 249132 Copy content Toggle raw display
7171 T8+28T7+2710272 T^{8} + 28 T^{7} + \cdots - 2710272 Copy content Toggle raw display
7373 T8+28T7++298768 T^{8} + 28 T^{7} + \cdots + 298768 Copy content Toggle raw display
7979 T84T7+1070784 T^{8} - 4 T^{7} + \cdots - 1070784 Copy content Toggle raw display
8383 T8+38T7+1404 T^{8} + 38 T^{7} + \cdots - 1404 Copy content Toggle raw display
8989 T822T7+182208 T^{8} - 22 T^{7} + \cdots - 182208 Copy content Toggle raw display
9797 T84T7+6656 T^{8} - 4 T^{7} + \cdots - 6656 Copy content Toggle raw display
show more
show less