Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4732,2,Mod(1,4732)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4732.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4732.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 364) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −2.98100 | 0 | 0.118179 | 0 | −1.00000 | 0 | 5.88638 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | 0 | −2.42977 | 0 | 3.63781 | 0 | −1.00000 | 0 | 2.90380 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | 0 | −2.25607 | 0 | −4.27591 | 0 | −1.00000 | 0 | 2.08985 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | 0 | −0.268953 | 0 | −1.35585 | 0 | −1.00000 | 0 | −2.92766 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | 0 | 1.17707 | 0 | 1.46614 | 0 | −1.00000 | 0 | −1.61452 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 0 | 1.75101 | 0 | 1.38536 | 0 | −1.00000 | 0 | 0.0660200 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 0 | 1.77673 | 0 | −3.82804 | 0 | −1.00000 | 0 | 0.156761 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 0 | 3.23100 | 0 | −3.14769 | 0 | −1.00000 | 0 | 7.43937 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4732.2.a.s | 8 | |
13.b | even | 2 | 1 | 4732.2.a.t | 8 | ||
13.d | odd | 4 | 2 | 4732.2.g.k | 16 | ||
13.f | odd | 12 | 2 | 364.2.u.a | ✓ | 16 | |
39.k | even | 12 | 2 | 3276.2.cf.c | 16 | ||
52.l | even | 12 | 2 | 1456.2.cc.f | 16 | ||
91.w | even | 12 | 2 | 2548.2.bq.c | 16 | ||
91.x | odd | 12 | 2 | 2548.2.bb.d | 16 | ||
91.ba | even | 12 | 2 | 2548.2.bb.c | 16 | ||
91.bc | even | 12 | 2 | 2548.2.u.c | 16 | ||
91.bd | odd | 12 | 2 | 2548.2.bq.e | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
364.2.u.a | ✓ | 16 | 13.f | odd | 12 | 2 | |
1456.2.cc.f | 16 | 52.l | even | 12 | 2 | ||
2548.2.u.c | 16 | 91.bc | even | 12 | 2 | ||
2548.2.bb.c | 16 | 91.ba | even | 12 | 2 | ||
2548.2.bb.d | 16 | 91.x | odd | 12 | 2 | ||
2548.2.bq.c | 16 | 91.w | even | 12 | 2 | ||
2548.2.bq.e | 16 | 91.bd | odd | 12 | 2 | ||
3276.2.cf.c | 16 | 39.k | even | 12 | 2 | ||
4732.2.a.s | 8 | 1.a | even | 1 | 1 | trivial | |
4732.2.a.t | 8 | 13.b | even | 2 | 1 | ||
4732.2.g.k | 16 | 13.d | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|