gp: [N,k,chi] = [4732,2,Mod(1,4732)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4732.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,-6,0,-8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 19 x 6 − 2 x 5 + 113 x 4 + 40 x 3 − 232 x 2 − 136 x + 52 x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 x 8 − 1 9 x 6 − 2 x 5 + 1 1 3 x 4 + 4 0 x 3 − 2 3 2 x 2 − 1 3 6 x + 5 2
x^8 - 19*x^6 - 2*x^5 + 113*x^4 + 40*x^3 - 232*x^2 - 136*x + 52
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − 3 ν 7 + 6 ν 6 + 47 ν 5 − 88 ν 4 − 193 ν 3 + 266 ν 2 + 270 ν − 108 ) / 4 ( -3\nu^{7} + 6\nu^{6} + 47\nu^{5} - 88\nu^{4} - 193\nu^{3} + 266\nu^{2} + 270\nu - 108 ) / 4 ( − 3 ν 7 + 6 ν 6 + 4 7 ν 5 − 8 8 ν 4 − 1 9 3 ν 3 + 2 6 6 ν 2 + 2 7 0 ν − 1 0 8 ) / 4
(-3*v^7 + 6*v^6 + 47*v^5 - 88*v^4 - 193*v^3 + 266*v^2 + 270*v - 108) / 4
β 3 \beta_{3} β 3 = = =
( 2 ν 7 − 3 ν 6 − 32 ν 5 + 45 ν 4 + 138 ν 3 − 137 ν 2 − 194 ν + 52 ) / 2 ( 2\nu^{7} - 3\nu^{6} - 32\nu^{5} + 45\nu^{4} + 138\nu^{3} - 137\nu^{2} - 194\nu + 52 ) / 2 ( 2 ν 7 − 3 ν 6 − 3 2 ν 5 + 4 5 ν 4 + 1 3 8 ν 3 − 1 3 7 ν 2 − 1 9 4 ν + 5 2 ) / 2
(2*v^7 - 3*v^6 - 32*v^5 + 45*v^4 + 138*v^3 - 137*v^2 - 194*v + 52) / 2
β 4 \beta_{4} β 4 = = =
( 4 ν 7 − 7 ν 6 − 64 ν 5 + 103 ν 4 + 274 ν 3 − 309 ν 2 − 388 ν + 114 ) / 4 ( 4\nu^{7} - 7\nu^{6} - 64\nu^{5} + 103\nu^{4} + 274\nu^{3} - 309\nu^{2} - 388\nu + 114 ) / 4 ( 4 ν 7 − 7 ν 6 − 6 4 ν 5 + 1 0 3 ν 4 + 2 7 4 ν 3 − 3 0 9 ν 2 − 3 8 8 ν + 1 1 4 ) / 4
(4*v^7 - 7*v^6 - 64*v^5 + 103*v^4 + 274*v^3 - 309*v^2 - 388*v + 114) / 4
β 5 \beta_{5} β 5 = = =
( − 6 ν 7 + 9 ν 6 + 94 ν 5 − 133 ν 4 − 384 ν 3 + 391 ν 2 + 492 ν − 154 ) / 4 ( -6\nu^{7} + 9\nu^{6} + 94\nu^{5} - 133\nu^{4} - 384\nu^{3} + 391\nu^{2} + 492\nu - 154 ) / 4 ( − 6 ν 7 + 9 ν 6 + 9 4 ν 5 − 1 3 3 ν 4 − 3 8 4 ν 3 + 3 9 1 ν 2 + 4 9 2 ν − 1 5 4 ) / 4
(-6*v^7 + 9*v^6 + 94*v^5 - 133*v^4 - 384*v^3 + 391*v^2 + 492*v - 154) / 4
β 6 \beta_{6} β 6 = = =
( − 7 ν 7 + 13 ν 6 + 111 ν 5 − 191 ν 4 − 467 ν 3 + 571 ν 2 + 662 ν − 202 ) / 4 ( -7\nu^{7} + 13\nu^{6} + 111\nu^{5} - 191\nu^{4} - 467\nu^{3} + 571\nu^{2} + 662\nu - 202 ) / 4 ( − 7 ν 7 + 1 3 ν 6 + 1 1 1 ν 5 − 1 9 1 ν 4 − 4 6 7 ν 3 + 5 7 1 ν 2 + 6 6 2 ν − 2 0 2 ) / 4
(-7*v^7 + 13*v^6 + 111*v^5 - 191*v^4 - 467*v^3 + 571*v^2 + 662*v - 202) / 4
β 7 \beta_{7} β 7 = = =
2 ν 7 − 4 ν 6 − 32 ν 5 + 59 ν 4 + 137 ν 3 − 181 ν 2 − 200 ν + 70 2\nu^{7} - 4\nu^{6} - 32\nu^{5} + 59\nu^{4} + 137\nu^{3} - 181\nu^{2} - 200\nu + 70 2 ν 7 − 4 ν 6 − 3 2 ν 5 + 5 9 ν 4 + 1 3 7 ν 3 − 1 8 1 ν 2 − 2 0 0 ν + 7 0
2*v^7 - 4*v^6 - 32*v^5 + 59*v^4 + 137*v^3 - 181*v^2 - 200*v + 70
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
− β 6 − β 4 + β 2 + β 1 + 5 -\beta_{6} - \beta_{4} + \beta_{2} + \beta _1 + 5 − β 6 − β 4 + β 2 + β 1 + 5
-b6 - b4 + b2 + b1 + 5
ν 3 \nu^{3} ν 3 = = =
− β 7 + β 5 + β 4 + β 3 − 2 β 2 + 6 β 1 -\beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} - 2\beta_{2} + 6\beta_1 − β 7 + β 5 + β 4 + β 3 − 2 β 2 + 6 β 1
-b7 + b5 + b4 + b3 - 2*b2 + 6*b1
ν 4 \nu^{4} ν 4 = = =
2 β 7 − 9 β 6 − β 5 − 14 β 4 + β 3 + 11 β 2 + 9 β 1 + 37 2\beta_{7} - 9\beta_{6} - \beta_{5} - 14\beta_{4} + \beta_{3} + 11\beta_{2} + 9\beta _1 + 37 2 β 7 − 9 β 6 − β 5 − 1 4 β 4 + β 3 + 1 1 β 2 + 9 β 1 + 3 7
2*b7 - 9*b6 - b5 - 14*b4 + b3 + 11*b2 + 9*b1 + 37
ν 5 \nu^{5} ν 5 = = =
− 13 β 7 + β 6 + 12 β 5 + 11 β 4 + 13 β 3 − 29 β 2 + 44 β 1 − 12 -13\beta_{7} + \beta_{6} + 12\beta_{5} + 11\beta_{4} + 13\beta_{3} - 29\beta_{2} + 44\beta _1 - 12 − 1 3 β 7 + β 6 + 1 2 β 5 + 1 1 β 4 + 1 3 β 3 − 2 9 β 2 + 4 4 β 1 − 1 2
-13*b7 + b6 + 12*b5 + 11*b4 + 13*b3 - 29*b2 + 44*b1 - 12
ν 6 \nu^{6} ν 6 = = =
28 β 7 − 82 β 6 − 15 β 5 − 153 β 4 + 15 β 3 + 112 β 2 + 70 β 1 + 316 28\beta_{7} - 82\beta_{6} - 15\beta_{5} - 153\beta_{4} + 15\beta_{3} + 112\beta_{2} + 70\beta _1 + 316 2 8 β 7 − 8 2 β 6 − 1 5 β 5 − 1 5 3 β 4 + 1 5 β 3 + 1 1 2 β 2 + 7 0 β 1 + 3 1 6
28*b7 - 82*b6 - 15*b5 - 153*b4 + 15*b3 + 112*b2 + 70*b1 + 316
ν 7 \nu^{7} ν 7 = = =
− 142 β 7 + 27 β 6 + 123 β 5 + 124 β 4 + 140 β 3 − 337 β 2 + 358 β 1 − 234 -142\beta_{7} + 27\beta_{6} + 123\beta_{5} + 124\beta_{4} + 140\beta_{3} - 337\beta_{2} + 358\beta _1 - 234 − 1 4 2 β 7 + 2 7 β 6 + 1 2 3 β 5 + 1 2 4 β 4 + 1 4 0 β 3 − 3 3 7 β 2 + 3 5 8 β 1 − 2 3 4
-142*b7 + 27*b6 + 123*b5 + 124*b4 + 140*b3 - 337*b2 + 358*b1 - 234
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 4732 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(4732)) S 2 n e w ( Γ 0 ( 4 7 3 2 ) ) :
T 3 8 − 19 T 3 6 + 2 T 3 5 + 113 T 3 4 − 40 T 3 3 − 232 T 3 2 + 136 T 3 + 52 T_{3}^{8} - 19T_{3}^{6} + 2T_{3}^{5} + 113T_{3}^{4} - 40T_{3}^{3} - 232T_{3}^{2} + 136T_{3} + 52 T 3 8 − 1 9 T 3 6 + 2 T 3 5 + 1 1 3 T 3 4 − 4 0 T 3 3 − 2 3 2 T 3 2 + 1 3 6 T 3 + 5 2
T3^8 - 19*T3^6 + 2*T3^5 + 113*T3^4 - 40*T3^3 - 232*T3^2 + 136*T3 + 52
T 5 8 + 6 T 5 7 − 13 T 5 6 − 112 T 5 5 − 4 T 5 4 + 470 T 5 3 + 11 T 5 2 − 524 T 5 + 61 T_{5}^{8} + 6T_{5}^{7} - 13T_{5}^{6} - 112T_{5}^{5} - 4T_{5}^{4} + 470T_{5}^{3} + 11T_{5}^{2} - 524T_{5} + 61 T 5 8 + 6 T 5 7 − 1 3 T 5 6 − 1 1 2 T 5 5 − 4 T 5 4 + 4 7 0 T 5 3 + 1 1 T 5 2 − 5 2 4 T 5 + 6 1
T5^8 + 6*T5^7 - 13*T5^6 - 112*T5^5 - 4*T5^4 + 470*T5^3 + 11*T5^2 - 524*T5 + 61
T 11 8 + 12 T 11 7 + 15 T 11 6 − 304 T 11 5 − 1051 T 11 4 + 1368 T 11 3 + 8584 T 11 2 + 2192 T 11 − 13628 T_{11}^{8} + 12T_{11}^{7} + 15T_{11}^{6} - 304T_{11}^{5} - 1051T_{11}^{4} + 1368T_{11}^{3} + 8584T_{11}^{2} + 2192T_{11} - 13628 T 1 1 8 + 1 2 T 1 1 7 + 1 5 T 1 1 6 − 3 0 4 T 1 1 5 − 1 0 5 1 T 1 1 4 + 1 3 6 8 T 1 1 3 + 8 5 8 4 T 1 1 2 + 2 1 9 2 T 1 1 − 1 3 6 2 8
T11^8 + 12*T11^7 + 15*T11^6 - 304*T11^5 - 1051*T11^4 + 1368*T11^3 + 8584*T11^2 + 2192*T11 - 13628
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 − 19 T 6 + ⋯ + 52 T^{8} - 19 T^{6} + \cdots + 52 T 8 − 1 9 T 6 + ⋯ + 5 2
T^8 - 19*T^6 + 2*T^5 + 113*T^4 - 40*T^3 - 232*T^2 + 136*T + 52
5 5 5
T 8 + 6 T 7 + ⋯ + 61 T^{8} + 6 T^{7} + \cdots + 61 T 8 + 6 T 7 + ⋯ + 6 1
T^8 + 6*T^7 - 13*T^6 - 112*T^5 - 4*T^4 + 470*T^3 + 11*T^2 - 524*T + 61
7 7 7
( T + 1 ) 8 (T + 1)^{8} ( T + 1 ) 8
(T + 1)^8
11 11 1 1
T 8 + 12 T 7 + ⋯ − 13628 T^{8} + 12 T^{7} + \cdots - 13628 T 8 + 1 2 T 7 + ⋯ − 1 3 6 2 8
T^8 + 12*T^7 + 15*T^6 - 304*T^5 - 1051*T^4 + 1368*T^3 + 8584*T^2 + 2192*T - 13628
13 13 1 3
T 8 T^{8} T 8
T^8
17 17 1 7
T 8 − 2 T 7 + ⋯ − 1727 T^{8} - 2 T^{7} + \cdots - 1727 T 8 − 2 T 7 + ⋯ − 1 7 2 7
T^8 - 2*T^7 - 76*T^6 + 182*T^5 + 1478*T^4 - 4270*T^3 - 2380*T^2 + 9498*T - 1727
19 19 1 9
T 8 + 6 T 7 + ⋯ + 35152 T^{8} + 6 T^{7} + \cdots + 35152 T 8 + 6 T 7 + ⋯ + 3 5 1 5 2
T^8 + 6*T^7 - 71*T^6 - 320*T^5 + 1557*T^4 + 4064*T^3 - 13912*T^2 - 11648*T + 35152
23 23 2 3
T 8 − 92 T 6 + ⋯ − 9408 T^{8} - 92 T^{6} + \cdots - 9408 T 8 − 9 2 T 6 + ⋯ − 9 4 0 8
T^8 - 92*T^6 - 32*T^5 + 2020*T^4 + 3200*T^3 - 8864*T^2 - 21504*T - 9408
29 29 2 9
T 8 − 22 T 7 + ⋯ − 23031 T^{8} - 22 T^{7} + \cdots - 23031 T 8 − 2 2 T 7 + ⋯ − 2 3 0 3 1
T^8 - 22*T^7 + 117*T^6 + 498*T^5 - 5644*T^4 + 7114*T^3 + 37813*T^2 - 71550*T - 23031
31 31 3 1
T 8 + 14 T 7 + ⋯ − 1282172 T^{8} + 14 T^{7} + \cdots - 1282172 T 8 + 1 4 T 7 + ⋯ − 1 2 8 2 1 7 2
T^8 + 14*T^7 - 94*T^6 - 2078*T^5 - 2815*T^4 + 76288*T^3 + 324692*T^2 - 29400*T - 1282172
37 37 3 7
T 8 + 12 T 7 + ⋯ + 24336 T^{8} + 12 T^{7} + \cdots + 24336 T 8 + 1 2 T 7 + ⋯ + 2 4 3 3 6
T^8 + 12*T^7 - 50*T^6 - 520*T^5 + 1441*T^4 + 5260*T^3 - 11756*T^2 - 16224*T + 24336
41 41 4 1
T 8 + 4 T 7 + ⋯ + 1279696 T^{8} + 4 T^{7} + \cdots + 1279696 T 8 + 4 T 7 + ⋯ + 1 2 7 9 6 9 6
T^8 + 4*T^7 - 262*T^6 - 960*T^5 + 18937*T^4 + 62956*T^3 - 322524*T^2 - 759616*T + 1279696
43 43 4 3
T 8 − 6 T 7 + ⋯ − 2442908 T^{8} - 6 T^{7} + \cdots - 2442908 T 8 − 6 T 7 + ⋯ − 2 4 4 2 9 0 8
T^8 - 6*T^7 - 269*T^6 + 1538*T^5 + 21357*T^4 - 118088*T^3 - 414832*T^2 + 2582264*T - 2442908
47 47 4 7
T 8 + 42 T 7 + ⋯ + 75664 T^{8} + 42 T^{7} + \cdots + 75664 T 8 + 4 2 T 7 + ⋯ + 7 5 6 6 4
T^8 + 42*T^7 + 730*T^6 + 6806*T^5 + 36897*T^4 + 117904*T^3 + 214664*T^2 + 202208*T + 75664
53 53 5 3
T 8 − 4 T 7 + ⋯ + 117909 T^{8} - 4 T^{7} + \cdots + 117909 T 8 − 4 T 7 + ⋯ + 1 1 7 9 0 9
T^8 - 4*T^7 - 200*T^6 + 684*T^5 + 10722*T^4 - 25164*T^3 - 160560*T^2 + 122148*T + 117909
59 59 5 9
T 8 + 2 T 7 + ⋯ + 10932 T^{8} + 2 T^{7} + \cdots + 10932 T 8 + 2 T 7 + ⋯ + 1 0 9 3 2
T^8 + 2*T^7 - 130*T^6 - 210*T^5 + 5037*T^4 + 6592*T^3 - 52724*T^2 - 88872*T + 10932
61 61 6 1
T 8 + 4 T 7 + ⋯ + 1286464 T^{8} + 4 T^{7} + \cdots + 1286464 T 8 + 4 T 7 + ⋯ + 1 2 8 6 4 6 4
T^8 + 4*T^7 - 262*T^6 - 844*T^5 + 15977*T^4 + 53912*T^3 - 243040*T^2 - 584256*T + 1286464
67 67 6 7
T 8 + 24 T 7 + ⋯ − 249132 T^{8} + 24 T^{7} + \cdots - 249132 T 8 + 2 4 T 7 + ⋯ − 2 4 9 1 3 2
T^8 + 24*T^7 + 70*T^6 - 2032*T^5 - 15155*T^4 - 1880*T^3 + 210844*T^2 + 349008*T - 249132
71 71 7 1
T 8 + 28 T 7 + ⋯ − 2710272 T^{8} + 28 T^{7} + \cdots - 2710272 T 8 + 2 8 T 7 + ⋯ − 2 7 1 0 2 7 2
T^8 + 28*T^7 - 16*T^6 - 6288*T^5 - 42336*T^4 + 264512*T^3 + 3400960*T^2 + 8232192*T - 2710272
73 73 7 3
T 8 + 28 T 7 + ⋯ + 298768 T^{8} + 28 T^{7} + \cdots + 298768 T 8 + 2 8 T 7 + ⋯ + 2 9 8 7 6 8
T^8 + 28*T^7 + 194*T^6 - 496*T^5 - 9031*T^4 - 17068*T^3 + 80252*T^2 + 319536*T + 298768
79 79 7 9
T 8 − 4 T 7 + ⋯ − 1070784 T^{8} - 4 T^{7} + \cdots - 1070784 T 8 − 4 T 7 + ⋯ − 1 0 7 0 7 8 4
T^8 - 4*T^7 - 328*T^6 + 1056*T^5 + 30996*T^4 - 101168*T^3 - 862448*T^2 + 3524352*T - 1070784
83 83 8 3
T 8 + 38 T 7 + ⋯ − 1404 T^{8} + 38 T^{7} + \cdots - 1404 T 8 + 3 8 T 7 + ⋯ − 1 4 0 4
T^8 + 38*T^7 + 394*T^6 - 998*T^5 - 36911*T^4 - 165456*T^3 - 80852*T^2 + 196200*T - 1404
89 89 8 9
T 8 − 22 T 7 + ⋯ − 182208 T^{8} - 22 T^{7} + \cdots - 182208 T 8 − 2 2 T 7 + ⋯ − 1 8 2 2 0 8
T^8 - 22*T^7 - 11*T^6 + 1972*T^5 - 4595*T^4 - 29040*T^3 + 57520*T^2 + 107136*T - 182208
97 97 9 7
T 8 − 4 T 7 + ⋯ − 6656 T^{8} - 4 T^{7} + \cdots - 6656 T 8 − 4 T 7 + ⋯ − 6 6 5 6
T^8 - 4*T^7 - 391*T^6 + 282*T^5 + 45565*T^4 + 57488*T^3 - 1659936*T^2 - 4570880*T - 6656
show more
show less