Properties

Label 2-4732-1.1-c1-0-52
Degree $2$
Conductor $4732$
Sign $-1$
Analytic cond. $37.7852$
Root an. cond. $6.14696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.42·3-s + 3.63·5-s − 7-s + 2.90·9-s − 3.86·11-s − 8.83·15-s + 1.63·17-s − 2.01·19-s + 2.42·21-s − 2.41·23-s + 8.23·25-s + 0.233·27-s + 4.02·29-s + 9.12·31-s + 9.39·33-s − 3.63·35-s − 12.0·37-s + 9.56·41-s − 9.86·43-s + 10.5·45-s − 8.94·47-s + 49-s − 3.97·51-s − 6.91·53-s − 14.0·55-s + 4.88·57-s + 0.115·59-s + ⋯
L(s)  = 1  − 1.40·3-s + 1.62·5-s − 0.377·7-s + 0.967·9-s − 1.16·11-s − 2.28·15-s + 0.396·17-s − 0.461·19-s + 0.530·21-s − 0.503·23-s + 1.64·25-s + 0.0449·27-s + 0.748·29-s + 1.63·31-s + 1.63·33-s − 0.614·35-s − 1.97·37-s + 1.49·41-s − 1.50·43-s + 1.57·45-s − 1.30·47-s + 0.142·49-s − 0.556·51-s − 0.950·53-s − 1.89·55-s + 0.647·57-s + 0.0150·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4732\)    =    \(2^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(37.7852\)
Root analytic conductor: \(6.14696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4732,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + 2.42T + 3T^{2} \)
5 \( 1 - 3.63T + 5T^{2} \)
11 \( 1 + 3.86T + 11T^{2} \)
17 \( 1 - 1.63T + 17T^{2} \)
19 \( 1 + 2.01T + 19T^{2} \)
23 \( 1 + 2.41T + 23T^{2} \)
29 \( 1 - 4.02T + 29T^{2} \)
31 \( 1 - 9.12T + 31T^{2} \)
37 \( 1 + 12.0T + 37T^{2} \)
41 \( 1 - 9.56T + 41T^{2} \)
43 \( 1 + 9.86T + 43T^{2} \)
47 \( 1 + 8.94T + 47T^{2} \)
53 \( 1 + 6.91T + 53T^{2} \)
59 \( 1 - 0.115T + 59T^{2} \)
61 \( 1 + 4.94T + 61T^{2} \)
67 \( 1 - 9.11T + 67T^{2} \)
71 \( 1 - 0.292T + 71T^{2} \)
73 \( 1 + 1.89T + 73T^{2} \)
79 \( 1 - 5.12T + 79T^{2} \)
83 \( 1 + 11.8T + 83T^{2} \)
89 \( 1 + 2.46T + 89T^{2} \)
97 \( 1 - 17.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.920625300912511502909550997279, −6.73882712828888178892444510646, −6.40135606035435276676046584045, −5.74866528573909012576265550915, −5.16539232886272105698109290023, −4.64211836707282827669446897843, −3.16189032925171636683374775300, −2.29961597734273650810113677846, −1.27725833693979325442039651790, 0, 1.27725833693979325442039651790, 2.29961597734273650810113677846, 3.16189032925171636683374775300, 4.64211836707282827669446897843, 5.16539232886272105698109290023, 5.74866528573909012576265550915, 6.40135606035435276676046584045, 6.73882712828888178892444510646, 7.920625300912511502909550997279

Graph of the $Z$-function along the critical line