Properties

Label 4732.2.a.s.1.2
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.42977\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.42977 q^{3} +3.63781 q^{5} -1.00000 q^{7} +2.90380 q^{9} -3.86676 q^{11} -8.83905 q^{15} +1.63539 q^{17} -2.01179 q^{19} +2.42977 q^{21} -2.41411 q^{23} +8.23365 q^{25} +0.233744 q^{27} +4.02983 q^{29} +9.12236 q^{31} +9.39535 q^{33} -3.63781 q^{35} -12.0257 q^{37} +9.56193 q^{41} -9.86092 q^{43} +10.5635 q^{45} -8.94009 q^{47} +1.00000 q^{49} -3.97364 q^{51} -6.91625 q^{53} -14.0665 q^{55} +4.88819 q^{57} +0.115252 q^{59} -4.94075 q^{61} -2.90380 q^{63} +9.11849 q^{67} +5.86575 q^{69} +0.292994 q^{71} -1.89250 q^{73} -20.0059 q^{75} +3.86676 q^{77} +5.12890 q^{79} -9.27934 q^{81} -11.8010 q^{83} +5.94925 q^{85} -9.79157 q^{87} -2.46394 q^{89} -22.1653 q^{93} -7.31850 q^{95} +17.4756 q^{97} -11.2283 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} - 8 q^{7} + 14 q^{9} - 12 q^{11} - 12 q^{15} + 2 q^{17} - 6 q^{19} + 22 q^{25} - 6 q^{27} + 22 q^{29} - 14 q^{31} + 28 q^{33} + 6 q^{35} - 12 q^{37} - 4 q^{41} + 6 q^{43} - 20 q^{45} - 42 q^{47}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.42977 −1.40283 −0.701415 0.712753i \(-0.747448\pi\)
−0.701415 + 0.712753i \(0.747448\pi\)
\(4\) 0 0
\(5\) 3.63781 1.62688 0.813439 0.581651i \(-0.197593\pi\)
0.813439 + 0.581651i \(0.197593\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.90380 0.967933
\(10\) 0 0
\(11\) −3.86676 −1.16587 −0.582936 0.812518i \(-0.698096\pi\)
−0.582936 + 0.812518i \(0.698096\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −8.83905 −2.28223
\(16\) 0 0
\(17\) 1.63539 0.396641 0.198321 0.980137i \(-0.436451\pi\)
0.198321 + 0.980137i \(0.436451\pi\)
\(18\) 0 0
\(19\) −2.01179 −0.461536 −0.230768 0.973009i \(-0.574124\pi\)
−0.230768 + 0.973009i \(0.574124\pi\)
\(20\) 0 0
\(21\) 2.42977 0.530220
\(22\) 0 0
\(23\) −2.41411 −0.503377 −0.251689 0.967808i \(-0.580986\pi\)
−0.251689 + 0.967808i \(0.580986\pi\)
\(24\) 0 0
\(25\) 8.23365 1.64673
\(26\) 0 0
\(27\) 0.233744 0.0449840
\(28\) 0 0
\(29\) 4.02983 0.748320 0.374160 0.927364i \(-0.377931\pi\)
0.374160 + 0.927364i \(0.377931\pi\)
\(30\) 0 0
\(31\) 9.12236 1.63842 0.819212 0.573490i \(-0.194411\pi\)
0.819212 + 0.573490i \(0.194411\pi\)
\(32\) 0 0
\(33\) 9.39535 1.63552
\(34\) 0 0
\(35\) −3.63781 −0.614902
\(36\) 0 0
\(37\) −12.0257 −1.97701 −0.988507 0.151175i \(-0.951694\pi\)
−0.988507 + 0.151175i \(0.951694\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.56193 1.49332 0.746661 0.665204i \(-0.231656\pi\)
0.746661 + 0.665204i \(0.231656\pi\)
\(42\) 0 0
\(43\) −9.86092 −1.50378 −0.751888 0.659291i \(-0.770857\pi\)
−0.751888 + 0.659291i \(0.770857\pi\)
\(44\) 0 0
\(45\) 10.5635 1.57471
\(46\) 0 0
\(47\) −8.94009 −1.30405 −0.652023 0.758199i \(-0.726079\pi\)
−0.652023 + 0.758199i \(0.726079\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.97364 −0.556421
\(52\) 0 0
\(53\) −6.91625 −0.950020 −0.475010 0.879980i \(-0.657556\pi\)
−0.475010 + 0.879980i \(0.657556\pi\)
\(54\) 0 0
\(55\) −14.0665 −1.89673
\(56\) 0 0
\(57\) 4.88819 0.647457
\(58\) 0 0
\(59\) 0.115252 0.0150045 0.00750224 0.999972i \(-0.497612\pi\)
0.00750224 + 0.999972i \(0.497612\pi\)
\(60\) 0 0
\(61\) −4.94075 −0.632598 −0.316299 0.948660i \(-0.602440\pi\)
−0.316299 + 0.948660i \(0.602440\pi\)
\(62\) 0 0
\(63\) −2.90380 −0.365844
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.11849 1.11400 0.557000 0.830512i \(-0.311952\pi\)
0.557000 + 0.830512i \(0.311952\pi\)
\(68\) 0 0
\(69\) 5.86575 0.706153
\(70\) 0 0
\(71\) 0.292994 0.0347720 0.0173860 0.999849i \(-0.494466\pi\)
0.0173860 + 0.999849i \(0.494466\pi\)
\(72\) 0 0
\(73\) −1.89250 −0.221500 −0.110750 0.993848i \(-0.535325\pi\)
−0.110750 + 0.993848i \(0.535325\pi\)
\(74\) 0 0
\(75\) −20.0059 −2.31008
\(76\) 0 0
\(77\) 3.86676 0.440658
\(78\) 0 0
\(79\) 5.12890 0.577046 0.288523 0.957473i \(-0.406836\pi\)
0.288523 + 0.957473i \(0.406836\pi\)
\(80\) 0 0
\(81\) −9.27934 −1.03104
\(82\) 0 0
\(83\) −11.8010 −1.29533 −0.647664 0.761926i \(-0.724254\pi\)
−0.647664 + 0.761926i \(0.724254\pi\)
\(84\) 0 0
\(85\) 5.94925 0.645287
\(86\) 0 0
\(87\) −9.79157 −1.04977
\(88\) 0 0
\(89\) −2.46394 −0.261177 −0.130588 0.991437i \(-0.541687\pi\)
−0.130588 + 0.991437i \(0.541687\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −22.1653 −2.29843
\(94\) 0 0
\(95\) −7.31850 −0.750862
\(96\) 0 0
\(97\) 17.4756 1.77438 0.887190 0.461404i \(-0.152654\pi\)
0.887190 + 0.461404i \(0.152654\pi\)
\(98\) 0 0
\(99\) −11.2283 −1.12849
\(100\) 0 0
\(101\) −10.2825 −1.02315 −0.511575 0.859239i \(-0.670938\pi\)
−0.511575 + 0.859239i \(0.670938\pi\)
\(102\) 0 0
\(103\) −7.17129 −0.706608 −0.353304 0.935509i \(-0.614942\pi\)
−0.353304 + 0.935509i \(0.614942\pi\)
\(104\) 0 0
\(105\) 8.83905 0.862603
\(106\) 0 0
\(107\) 14.9827 1.44843 0.724216 0.689573i \(-0.242202\pi\)
0.724216 + 0.689573i \(0.242202\pi\)
\(108\) 0 0
\(109\) −8.82413 −0.845198 −0.422599 0.906317i \(-0.638882\pi\)
−0.422599 + 0.906317i \(0.638882\pi\)
\(110\) 0 0
\(111\) 29.2197 2.77342
\(112\) 0 0
\(113\) 5.48631 0.516108 0.258054 0.966130i \(-0.416919\pi\)
0.258054 + 0.966130i \(0.416919\pi\)
\(114\) 0 0
\(115\) −8.78208 −0.818933
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.63539 −0.149916
\(120\) 0 0
\(121\) 3.95183 0.359258
\(122\) 0 0
\(123\) −23.2333 −2.09488
\(124\) 0 0
\(125\) 11.7634 1.05215
\(126\) 0 0
\(127\) −12.0811 −1.07202 −0.536012 0.844210i \(-0.680070\pi\)
−0.536012 + 0.844210i \(0.680070\pi\)
\(128\) 0 0
\(129\) 23.9598 2.10954
\(130\) 0 0
\(131\) 3.82950 0.334585 0.167293 0.985907i \(-0.446498\pi\)
0.167293 + 0.985907i \(0.446498\pi\)
\(132\) 0 0
\(133\) 2.01179 0.174444
\(134\) 0 0
\(135\) 0.850315 0.0731834
\(136\) 0 0
\(137\) −6.31957 −0.539917 −0.269959 0.962872i \(-0.587010\pi\)
−0.269959 + 0.962872i \(0.587010\pi\)
\(138\) 0 0
\(139\) −2.68186 −0.227472 −0.113736 0.993511i \(-0.536282\pi\)
−0.113736 + 0.993511i \(0.536282\pi\)
\(140\) 0 0
\(141\) 21.7224 1.82935
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 14.6597 1.21743
\(146\) 0 0
\(147\) −2.42977 −0.200404
\(148\) 0 0
\(149\) −15.5711 −1.27563 −0.637817 0.770188i \(-0.720163\pi\)
−0.637817 + 0.770188i \(0.720163\pi\)
\(150\) 0 0
\(151\) −15.7761 −1.28384 −0.641920 0.766771i \(-0.721862\pi\)
−0.641920 + 0.766771i \(0.721862\pi\)
\(152\) 0 0
\(153\) 4.74886 0.383922
\(154\) 0 0
\(155\) 33.1854 2.66552
\(156\) 0 0
\(157\) −9.67555 −0.772193 −0.386096 0.922458i \(-0.626177\pi\)
−0.386096 + 0.922458i \(0.626177\pi\)
\(158\) 0 0
\(159\) 16.8049 1.33272
\(160\) 0 0
\(161\) 2.41411 0.190259
\(162\) 0 0
\(163\) 12.8297 1.00490 0.502448 0.864607i \(-0.332433\pi\)
0.502448 + 0.864607i \(0.332433\pi\)
\(164\) 0 0
\(165\) 34.1785 2.66079
\(166\) 0 0
\(167\) 10.4124 0.805736 0.402868 0.915258i \(-0.368013\pi\)
0.402868 + 0.915258i \(0.368013\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −5.84183 −0.446736
\(172\) 0 0
\(173\) 12.1778 0.925862 0.462931 0.886394i \(-0.346798\pi\)
0.462931 + 0.886394i \(0.346798\pi\)
\(174\) 0 0
\(175\) −8.23365 −0.622405
\(176\) 0 0
\(177\) −0.280035 −0.0210488
\(178\) 0 0
\(179\) 0.468018 0.0349813 0.0174907 0.999847i \(-0.494432\pi\)
0.0174907 + 0.999847i \(0.494432\pi\)
\(180\) 0 0
\(181\) 20.4110 1.51714 0.758570 0.651592i \(-0.225898\pi\)
0.758570 + 0.651592i \(0.225898\pi\)
\(182\) 0 0
\(183\) 12.0049 0.887427
\(184\) 0 0
\(185\) −43.7472 −3.21636
\(186\) 0 0
\(187\) −6.32368 −0.462433
\(188\) 0 0
\(189\) −0.233744 −0.0170024
\(190\) 0 0
\(191\) −3.48905 −0.252459 −0.126230 0.992001i \(-0.540288\pi\)
−0.126230 + 0.992001i \(0.540288\pi\)
\(192\) 0 0
\(193\) −3.44525 −0.247994 −0.123997 0.992283i \(-0.539571\pi\)
−0.123997 + 0.992283i \(0.539571\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.6229 −0.899347 −0.449674 0.893193i \(-0.648460\pi\)
−0.449674 + 0.893193i \(0.648460\pi\)
\(198\) 0 0
\(199\) −11.0467 −0.783080 −0.391540 0.920161i \(-0.628058\pi\)
−0.391540 + 0.920161i \(0.628058\pi\)
\(200\) 0 0
\(201\) −22.1559 −1.56275
\(202\) 0 0
\(203\) −4.02983 −0.282838
\(204\) 0 0
\(205\) 34.7845 2.42945
\(206\) 0 0
\(207\) −7.01010 −0.487236
\(208\) 0 0
\(209\) 7.77910 0.538092
\(210\) 0 0
\(211\) −1.00569 −0.0692342 −0.0346171 0.999401i \(-0.511021\pi\)
−0.0346171 + 0.999401i \(0.511021\pi\)
\(212\) 0 0
\(213\) −0.711910 −0.0487793
\(214\) 0 0
\(215\) −35.8721 −2.44646
\(216\) 0 0
\(217\) −9.12236 −0.619266
\(218\) 0 0
\(219\) 4.59835 0.310728
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −22.3034 −1.49355 −0.746773 0.665079i \(-0.768398\pi\)
−0.746773 + 0.665079i \(0.768398\pi\)
\(224\) 0 0
\(225\) 23.9089 1.59392
\(226\) 0 0
\(227\) −16.0475 −1.06511 −0.532555 0.846395i \(-0.678768\pi\)
−0.532555 + 0.846395i \(0.678768\pi\)
\(228\) 0 0
\(229\) −12.2285 −0.808082 −0.404041 0.914741i \(-0.632395\pi\)
−0.404041 + 0.914741i \(0.632395\pi\)
\(230\) 0 0
\(231\) −9.39535 −0.618169
\(232\) 0 0
\(233\) 7.66467 0.502129 0.251065 0.967970i \(-0.419219\pi\)
0.251065 + 0.967970i \(0.419219\pi\)
\(234\) 0 0
\(235\) −32.5223 −2.12152
\(236\) 0 0
\(237\) −12.4621 −0.809498
\(238\) 0 0
\(239\) −9.63081 −0.622965 −0.311483 0.950252i \(-0.600826\pi\)
−0.311483 + 0.950252i \(0.600826\pi\)
\(240\) 0 0
\(241\) −0.143077 −0.00921638 −0.00460819 0.999989i \(-0.501467\pi\)
−0.00460819 + 0.999989i \(0.501467\pi\)
\(242\) 0 0
\(243\) 21.8455 1.40139
\(244\) 0 0
\(245\) 3.63781 0.232411
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 28.6738 1.81713
\(250\) 0 0
\(251\) 10.2047 0.644117 0.322059 0.946720i \(-0.395625\pi\)
0.322059 + 0.946720i \(0.395625\pi\)
\(252\) 0 0
\(253\) 9.33479 0.586873
\(254\) 0 0
\(255\) −14.4553 −0.905228
\(256\) 0 0
\(257\) −20.1595 −1.25751 −0.628756 0.777602i \(-0.716436\pi\)
−0.628756 + 0.777602i \(0.716436\pi\)
\(258\) 0 0
\(259\) 12.0257 0.747241
\(260\) 0 0
\(261\) 11.7018 0.724324
\(262\) 0 0
\(263\) 28.5916 1.76303 0.881516 0.472154i \(-0.156523\pi\)
0.881516 + 0.472154i \(0.156523\pi\)
\(264\) 0 0
\(265\) −25.1600 −1.54557
\(266\) 0 0
\(267\) 5.98681 0.366387
\(268\) 0 0
\(269\) −32.2457 −1.96606 −0.983028 0.183453i \(-0.941272\pi\)
−0.983028 + 0.183453i \(0.941272\pi\)
\(270\) 0 0
\(271\) −24.1675 −1.46807 −0.734035 0.679112i \(-0.762365\pi\)
−0.734035 + 0.679112i \(0.762365\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −31.8375 −1.91988
\(276\) 0 0
\(277\) −20.1726 −1.21205 −0.606027 0.795444i \(-0.707238\pi\)
−0.606027 + 0.795444i \(0.707238\pi\)
\(278\) 0 0
\(279\) 26.4895 1.58589
\(280\) 0 0
\(281\) 24.0074 1.43216 0.716080 0.698018i \(-0.245934\pi\)
0.716080 + 0.698018i \(0.245934\pi\)
\(282\) 0 0
\(283\) 13.5536 0.805680 0.402840 0.915270i \(-0.368023\pi\)
0.402840 + 0.915270i \(0.368023\pi\)
\(284\) 0 0
\(285\) 17.7823 1.05333
\(286\) 0 0
\(287\) −9.56193 −0.564423
\(288\) 0 0
\(289\) −14.3255 −0.842676
\(290\) 0 0
\(291\) −42.4618 −2.48915
\(292\) 0 0
\(293\) −14.2739 −0.833891 −0.416945 0.908931i \(-0.636899\pi\)
−0.416945 + 0.908931i \(0.636899\pi\)
\(294\) 0 0
\(295\) 0.419263 0.0244105
\(296\) 0 0
\(297\) −0.903831 −0.0524456
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.86092 0.568374
\(302\) 0 0
\(303\) 24.9842 1.43531
\(304\) 0 0
\(305\) −17.9735 −1.02916
\(306\) 0 0
\(307\) −28.2784 −1.61393 −0.806966 0.590598i \(-0.798892\pi\)
−0.806966 + 0.590598i \(0.798892\pi\)
\(308\) 0 0
\(309\) 17.4246 0.991251
\(310\) 0 0
\(311\) −6.86783 −0.389439 −0.194719 0.980859i \(-0.562380\pi\)
−0.194719 + 0.980859i \(0.562380\pi\)
\(312\) 0 0
\(313\) −19.8476 −1.12185 −0.560927 0.827865i \(-0.689555\pi\)
−0.560927 + 0.827865i \(0.689555\pi\)
\(314\) 0 0
\(315\) −10.5635 −0.595184
\(316\) 0 0
\(317\) −33.1727 −1.86317 −0.931584 0.363527i \(-0.881572\pi\)
−0.931584 + 0.363527i \(0.881572\pi\)
\(318\) 0 0
\(319\) −15.5824 −0.872446
\(320\) 0 0
\(321\) −36.4046 −2.03191
\(322\) 0 0
\(323\) −3.29007 −0.183064
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 21.4406 1.18567
\(328\) 0 0
\(329\) 8.94009 0.492883
\(330\) 0 0
\(331\) 16.6643 0.915954 0.457977 0.888964i \(-0.348574\pi\)
0.457977 + 0.888964i \(0.348574\pi\)
\(332\) 0 0
\(333\) −34.9203 −1.91362
\(334\) 0 0
\(335\) 33.1713 1.81234
\(336\) 0 0
\(337\) −2.84905 −0.155198 −0.0775989 0.996985i \(-0.524725\pi\)
−0.0775989 + 0.996985i \(0.524725\pi\)
\(338\) 0 0
\(339\) −13.3305 −0.724013
\(340\) 0 0
\(341\) −35.2740 −1.91019
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 21.3385 1.14882
\(346\) 0 0
\(347\) −13.6349 −0.731958 −0.365979 0.930623i \(-0.619266\pi\)
−0.365979 + 0.930623i \(0.619266\pi\)
\(348\) 0 0
\(349\) −2.37578 −0.127173 −0.0635864 0.997976i \(-0.520254\pi\)
−0.0635864 + 0.997976i \(0.520254\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.272700 −0.0145143 −0.00725717 0.999974i \(-0.502310\pi\)
−0.00725717 + 0.999974i \(0.502310\pi\)
\(354\) 0 0
\(355\) 1.06586 0.0565698
\(356\) 0 0
\(357\) 3.97364 0.210307
\(358\) 0 0
\(359\) −2.41260 −0.127332 −0.0636661 0.997971i \(-0.520279\pi\)
−0.0636661 + 0.997971i \(0.520279\pi\)
\(360\) 0 0
\(361\) −14.9527 −0.786985
\(362\) 0 0
\(363\) −9.60206 −0.503977
\(364\) 0 0
\(365\) −6.88455 −0.360354
\(366\) 0 0
\(367\) 27.1383 1.41661 0.708304 0.705908i \(-0.249461\pi\)
0.708304 + 0.705908i \(0.249461\pi\)
\(368\) 0 0
\(369\) 27.7659 1.44544
\(370\) 0 0
\(371\) 6.91625 0.359074
\(372\) 0 0
\(373\) 28.3127 1.46598 0.732988 0.680242i \(-0.238125\pi\)
0.732988 + 0.680242i \(0.238125\pi\)
\(374\) 0 0
\(375\) −28.5824 −1.47599
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −18.8560 −0.968570 −0.484285 0.874910i \(-0.660920\pi\)
−0.484285 + 0.874910i \(0.660920\pi\)
\(380\) 0 0
\(381\) 29.3544 1.50387
\(382\) 0 0
\(383\) −38.4766 −1.96606 −0.983031 0.183437i \(-0.941278\pi\)
−0.983031 + 0.183437i \(0.941278\pi\)
\(384\) 0 0
\(385\) 14.0665 0.716897
\(386\) 0 0
\(387\) −28.6341 −1.45556
\(388\) 0 0
\(389\) −25.6279 −1.29938 −0.649692 0.760198i \(-0.725102\pi\)
−0.649692 + 0.760198i \(0.725102\pi\)
\(390\) 0 0
\(391\) −3.94802 −0.199660
\(392\) 0 0
\(393\) −9.30483 −0.469366
\(394\) 0 0
\(395\) 18.6579 0.938783
\(396\) 0 0
\(397\) 6.69787 0.336156 0.168078 0.985774i \(-0.446244\pi\)
0.168078 + 0.985774i \(0.446244\pi\)
\(398\) 0 0
\(399\) −4.88819 −0.244716
\(400\) 0 0
\(401\) 20.5402 1.02573 0.512865 0.858469i \(-0.328584\pi\)
0.512865 + 0.858469i \(0.328584\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −33.7565 −1.67737
\(406\) 0 0
\(407\) 46.5005 2.30495
\(408\) 0 0
\(409\) 14.6682 0.725296 0.362648 0.931926i \(-0.381873\pi\)
0.362648 + 0.931926i \(0.381873\pi\)
\(410\) 0 0
\(411\) 15.3551 0.757413
\(412\) 0 0
\(413\) −0.115252 −0.00567116
\(414\) 0 0
\(415\) −42.9298 −2.10734
\(416\) 0 0
\(417\) 6.51631 0.319105
\(418\) 0 0
\(419\) 26.8818 1.31326 0.656631 0.754212i \(-0.271981\pi\)
0.656631 + 0.754212i \(0.271981\pi\)
\(420\) 0 0
\(421\) −4.54437 −0.221479 −0.110739 0.993849i \(-0.535322\pi\)
−0.110739 + 0.993849i \(0.535322\pi\)
\(422\) 0 0
\(423\) −25.9602 −1.26223
\(424\) 0 0
\(425\) 13.4653 0.653161
\(426\) 0 0
\(427\) 4.94075 0.239099
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.3205 −0.593458 −0.296729 0.954962i \(-0.595896\pi\)
−0.296729 + 0.954962i \(0.595896\pi\)
\(432\) 0 0
\(433\) −24.4463 −1.17482 −0.587408 0.809291i \(-0.699851\pi\)
−0.587408 + 0.809291i \(0.699851\pi\)
\(434\) 0 0
\(435\) −35.6199 −1.70784
\(436\) 0 0
\(437\) 4.85668 0.232327
\(438\) 0 0
\(439\) 5.30566 0.253226 0.126613 0.991952i \(-0.459589\pi\)
0.126613 + 0.991952i \(0.459589\pi\)
\(440\) 0 0
\(441\) 2.90380 0.138276
\(442\) 0 0
\(443\) −1.26200 −0.0599596 −0.0299798 0.999551i \(-0.509544\pi\)
−0.0299798 + 0.999551i \(0.509544\pi\)
\(444\) 0 0
\(445\) −8.96333 −0.424903
\(446\) 0 0
\(447\) 37.8343 1.78950
\(448\) 0 0
\(449\) 23.5399 1.11092 0.555458 0.831544i \(-0.312543\pi\)
0.555458 + 0.831544i \(0.312543\pi\)
\(450\) 0 0
\(451\) −36.9737 −1.74102
\(452\) 0 0
\(453\) 38.3323 1.80101
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.1800 −1.08431 −0.542157 0.840277i \(-0.682392\pi\)
−0.542157 + 0.840277i \(0.682392\pi\)
\(458\) 0 0
\(459\) 0.382263 0.0178425
\(460\) 0 0
\(461\) 35.9400 1.67389 0.836945 0.547286i \(-0.184339\pi\)
0.836945 + 0.547286i \(0.184339\pi\)
\(462\) 0 0
\(463\) −12.9147 −0.600197 −0.300098 0.953908i \(-0.597019\pi\)
−0.300098 + 0.953908i \(0.597019\pi\)
\(464\) 0 0
\(465\) −80.6330 −3.73927
\(466\) 0 0
\(467\) 13.6014 0.629398 0.314699 0.949192i \(-0.398096\pi\)
0.314699 + 0.949192i \(0.398096\pi\)
\(468\) 0 0
\(469\) −9.11849 −0.421053
\(470\) 0 0
\(471\) 23.5094 1.08326
\(472\) 0 0
\(473\) 38.1298 1.75321
\(474\) 0 0
\(475\) −16.5644 −0.760025
\(476\) 0 0
\(477\) −20.0834 −0.919556
\(478\) 0 0
\(479\) 19.9491 0.911499 0.455750 0.890108i \(-0.349371\pi\)
0.455750 + 0.890108i \(0.349371\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −5.86575 −0.266901
\(484\) 0 0
\(485\) 63.5729 2.88670
\(486\) 0 0
\(487\) −19.4990 −0.883583 −0.441791 0.897118i \(-0.645657\pi\)
−0.441791 + 0.897118i \(0.645657\pi\)
\(488\) 0 0
\(489\) −31.1732 −1.40970
\(490\) 0 0
\(491\) 19.0547 0.859925 0.429962 0.902847i \(-0.358527\pi\)
0.429962 + 0.902847i \(0.358527\pi\)
\(492\) 0 0
\(493\) 6.59036 0.296815
\(494\) 0 0
\(495\) −40.8464 −1.83591
\(496\) 0 0
\(497\) −0.292994 −0.0131426
\(498\) 0 0
\(499\) −13.6662 −0.611785 −0.305892 0.952066i \(-0.598955\pi\)
−0.305892 + 0.952066i \(0.598955\pi\)
\(500\) 0 0
\(501\) −25.2998 −1.13031
\(502\) 0 0
\(503\) −2.30153 −0.102620 −0.0513100 0.998683i \(-0.516340\pi\)
−0.0513100 + 0.998683i \(0.516340\pi\)
\(504\) 0 0
\(505\) −37.4059 −1.66454
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.2554 −0.986452 −0.493226 0.869901i \(-0.664182\pi\)
−0.493226 + 0.869901i \(0.664182\pi\)
\(510\) 0 0
\(511\) 1.89250 0.0837193
\(512\) 0 0
\(513\) −0.470243 −0.0207617
\(514\) 0 0
\(515\) −26.0878 −1.14956
\(516\) 0 0
\(517\) 34.5692 1.52035
\(518\) 0 0
\(519\) −29.5893 −1.29883
\(520\) 0 0
\(521\) 13.1581 0.576465 0.288233 0.957560i \(-0.406932\pi\)
0.288233 + 0.957560i \(0.406932\pi\)
\(522\) 0 0
\(523\) −39.8057 −1.74058 −0.870291 0.492538i \(-0.836069\pi\)
−0.870291 + 0.492538i \(0.836069\pi\)
\(524\) 0 0
\(525\) 20.0059 0.873129
\(526\) 0 0
\(527\) 14.9187 0.649867
\(528\) 0 0
\(529\) −17.1721 −0.746611
\(530\) 0 0
\(531\) 0.334668 0.0145233
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 54.5042 2.35642
\(536\) 0 0
\(537\) −1.13718 −0.0490729
\(538\) 0 0
\(539\) −3.86676 −0.166553
\(540\) 0 0
\(541\) 18.7716 0.807055 0.403527 0.914968i \(-0.367784\pi\)
0.403527 + 0.914968i \(0.367784\pi\)
\(542\) 0 0
\(543\) −49.5942 −2.12829
\(544\) 0 0
\(545\) −32.1005 −1.37503
\(546\) 0 0
\(547\) 43.1197 1.84366 0.921832 0.387589i \(-0.126692\pi\)
0.921832 + 0.387589i \(0.126692\pi\)
\(548\) 0 0
\(549\) −14.3469 −0.612312
\(550\) 0 0
\(551\) −8.10716 −0.345377
\(552\) 0 0
\(553\) −5.12890 −0.218103
\(554\) 0 0
\(555\) 106.296 4.51201
\(556\) 0 0
\(557\) −23.5716 −0.998763 −0.499381 0.866382i \(-0.666439\pi\)
−0.499381 + 0.866382i \(0.666439\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 15.3651 0.648715
\(562\) 0 0
\(563\) −24.2726 −1.02297 −0.511484 0.859293i \(-0.670904\pi\)
−0.511484 + 0.859293i \(0.670904\pi\)
\(564\) 0 0
\(565\) 19.9581 0.839645
\(566\) 0 0
\(567\) 9.27934 0.389696
\(568\) 0 0
\(569\) 43.0307 1.80394 0.901969 0.431800i \(-0.142121\pi\)
0.901969 + 0.431800i \(0.142121\pi\)
\(570\) 0 0
\(571\) 10.1365 0.424201 0.212101 0.977248i \(-0.431970\pi\)
0.212101 + 0.977248i \(0.431970\pi\)
\(572\) 0 0
\(573\) 8.47761 0.354157
\(574\) 0 0
\(575\) −19.8770 −0.828926
\(576\) 0 0
\(577\) 11.8664 0.494005 0.247003 0.969015i \(-0.420554\pi\)
0.247003 + 0.969015i \(0.420554\pi\)
\(578\) 0 0
\(579\) 8.37117 0.347894
\(580\) 0 0
\(581\) 11.8010 0.489588
\(582\) 0 0
\(583\) 26.7435 1.10760
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.7030 −0.937054 −0.468527 0.883449i \(-0.655215\pi\)
−0.468527 + 0.883449i \(0.655215\pi\)
\(588\) 0 0
\(589\) −18.3523 −0.756192
\(590\) 0 0
\(591\) 30.6709 1.26163
\(592\) 0 0
\(593\) −41.0665 −1.68640 −0.843200 0.537600i \(-0.819331\pi\)
−0.843200 + 0.537600i \(0.819331\pi\)
\(594\) 0 0
\(595\) −5.94925 −0.243895
\(596\) 0 0
\(597\) 26.8410 1.09853
\(598\) 0 0
\(599\) −20.8122 −0.850362 −0.425181 0.905108i \(-0.639789\pi\)
−0.425181 + 0.905108i \(0.639789\pi\)
\(600\) 0 0
\(601\) −5.03451 −0.205362 −0.102681 0.994714i \(-0.532742\pi\)
−0.102681 + 0.994714i \(0.532742\pi\)
\(602\) 0 0
\(603\) 26.4783 1.07828
\(604\) 0 0
\(605\) 14.3760 0.584468
\(606\) 0 0
\(607\) −9.73875 −0.395284 −0.197642 0.980274i \(-0.563328\pi\)
−0.197642 + 0.980274i \(0.563328\pi\)
\(608\) 0 0
\(609\) 9.79157 0.396774
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17.1955 0.694521 0.347260 0.937769i \(-0.387112\pi\)
0.347260 + 0.937769i \(0.387112\pi\)
\(614\) 0 0
\(615\) −84.5184 −3.40811
\(616\) 0 0
\(617\) 17.8752 0.719628 0.359814 0.933024i \(-0.382840\pi\)
0.359814 + 0.933024i \(0.382840\pi\)
\(618\) 0 0
\(619\) 21.3112 0.856568 0.428284 0.903644i \(-0.359118\pi\)
0.428284 + 0.903644i \(0.359118\pi\)
\(620\) 0 0
\(621\) −0.564283 −0.0226439
\(622\) 0 0
\(623\) 2.46394 0.0987155
\(624\) 0 0
\(625\) 1.62474 0.0649895
\(626\) 0 0
\(627\) −18.9015 −0.754851
\(628\) 0 0
\(629\) −19.6668 −0.784166
\(630\) 0 0
\(631\) −12.6066 −0.501861 −0.250930 0.968005i \(-0.580736\pi\)
−0.250930 + 0.968005i \(0.580736\pi\)
\(632\) 0 0
\(633\) 2.44359 0.0971239
\(634\) 0 0
\(635\) −43.9487 −1.74405
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.850797 0.0336570
\(640\) 0 0
\(641\) 1.90705 0.0753238 0.0376619 0.999291i \(-0.488009\pi\)
0.0376619 + 0.999291i \(0.488009\pi\)
\(642\) 0 0
\(643\) 11.0489 0.435726 0.217863 0.975979i \(-0.430091\pi\)
0.217863 + 0.975979i \(0.430091\pi\)
\(644\) 0 0
\(645\) 87.1612 3.43197
\(646\) 0 0
\(647\) 44.7891 1.76084 0.880420 0.474195i \(-0.157261\pi\)
0.880420 + 0.474195i \(0.157261\pi\)
\(648\) 0 0
\(649\) −0.445651 −0.0174933
\(650\) 0 0
\(651\) 22.1653 0.868726
\(652\) 0 0
\(653\) 20.8774 0.816997 0.408499 0.912759i \(-0.366052\pi\)
0.408499 + 0.912759i \(0.366052\pi\)
\(654\) 0 0
\(655\) 13.9310 0.544329
\(656\) 0 0
\(657\) −5.49544 −0.214398
\(658\) 0 0
\(659\) 1.80102 0.0701577 0.0350788 0.999385i \(-0.488832\pi\)
0.0350788 + 0.999385i \(0.488832\pi\)
\(660\) 0 0
\(661\) −9.77342 −0.380142 −0.190071 0.981770i \(-0.560872\pi\)
−0.190071 + 0.981770i \(0.560872\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.31850 0.283799
\(666\) 0 0
\(667\) −9.72846 −0.376687
\(668\) 0 0
\(669\) 54.1922 2.09519
\(670\) 0 0
\(671\) 19.1047 0.737528
\(672\) 0 0
\(673\) −16.6334 −0.641169 −0.320584 0.947220i \(-0.603879\pi\)
−0.320584 + 0.947220i \(0.603879\pi\)
\(674\) 0 0
\(675\) 1.92456 0.0740765
\(676\) 0 0
\(677\) 33.5232 1.28840 0.644201 0.764856i \(-0.277190\pi\)
0.644201 + 0.764856i \(0.277190\pi\)
\(678\) 0 0
\(679\) −17.4756 −0.670653
\(680\) 0 0
\(681\) 38.9918 1.49417
\(682\) 0 0
\(683\) −23.7649 −0.909339 −0.454670 0.890660i \(-0.650243\pi\)
−0.454670 + 0.890660i \(0.650243\pi\)
\(684\) 0 0
\(685\) −22.9894 −0.878379
\(686\) 0 0
\(687\) 29.7125 1.13360
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −5.25581 −0.199940 −0.0999702 0.994990i \(-0.531875\pi\)
−0.0999702 + 0.994990i \(0.531875\pi\)
\(692\) 0 0
\(693\) 11.2283 0.426528
\(694\) 0 0
\(695\) −9.75608 −0.370069
\(696\) 0 0
\(697\) 15.6375 0.592314
\(698\) 0 0
\(699\) −18.6234 −0.704402
\(700\) 0 0
\(701\) −10.3164 −0.389646 −0.194823 0.980838i \(-0.562413\pi\)
−0.194823 + 0.980838i \(0.562413\pi\)
\(702\) 0 0
\(703\) 24.1932 0.912463
\(704\) 0 0
\(705\) 79.0219 2.97614
\(706\) 0 0
\(707\) 10.2825 0.386714
\(708\) 0 0
\(709\) 19.3457 0.726544 0.363272 0.931683i \(-0.381660\pi\)
0.363272 + 0.931683i \(0.381660\pi\)
\(710\) 0 0
\(711\) 14.8933 0.558542
\(712\) 0 0
\(713\) −22.0224 −0.824746
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 23.4007 0.873915
\(718\) 0 0
\(719\) −48.0744 −1.79287 −0.896437 0.443171i \(-0.853853\pi\)
−0.896437 + 0.443171i \(0.853853\pi\)
\(720\) 0 0
\(721\) 7.17129 0.267073
\(722\) 0 0
\(723\) 0.347644 0.0129290
\(724\) 0 0
\(725\) 33.1802 1.23228
\(726\) 0 0
\(727\) −11.6338 −0.431475 −0.215738 0.976451i \(-0.569216\pi\)
−0.215738 + 0.976451i \(0.569216\pi\)
\(728\) 0 0
\(729\) −25.2415 −0.934872
\(730\) 0 0
\(731\) −16.1265 −0.596460
\(732\) 0 0
\(733\) −30.3258 −1.12011 −0.560055 0.828456i \(-0.689220\pi\)
−0.560055 + 0.828456i \(0.689220\pi\)
\(734\) 0 0
\(735\) −8.83905 −0.326033
\(736\) 0 0
\(737\) −35.2590 −1.29878
\(738\) 0 0
\(739\) 9.70934 0.357164 0.178582 0.983925i \(-0.442849\pi\)
0.178582 + 0.983925i \(0.442849\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.0979 1.54442 0.772211 0.635366i \(-0.219151\pi\)
0.772211 + 0.635366i \(0.219151\pi\)
\(744\) 0 0
\(745\) −56.6447 −2.07530
\(746\) 0 0
\(747\) −34.2677 −1.25379
\(748\) 0 0
\(749\) −14.9827 −0.547456
\(750\) 0 0
\(751\) 24.5710 0.896609 0.448305 0.893881i \(-0.352028\pi\)
0.448305 + 0.893881i \(0.352028\pi\)
\(752\) 0 0
\(753\) −24.7952 −0.903587
\(754\) 0 0
\(755\) −57.3904 −2.08865
\(756\) 0 0
\(757\) 36.1120 1.31251 0.656257 0.754538i \(-0.272139\pi\)
0.656257 + 0.754538i \(0.272139\pi\)
\(758\) 0 0
\(759\) −22.6814 −0.823284
\(760\) 0 0
\(761\) −15.4059 −0.558462 −0.279231 0.960224i \(-0.590080\pi\)
−0.279231 + 0.960224i \(0.590080\pi\)
\(762\) 0 0
\(763\) 8.82413 0.319455
\(764\) 0 0
\(765\) 17.2754 0.624595
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 20.4142 0.736155 0.368078 0.929795i \(-0.380016\pi\)
0.368078 + 0.929795i \(0.380016\pi\)
\(770\) 0 0
\(771\) 48.9829 1.76408
\(772\) 0 0
\(773\) −49.1342 −1.76723 −0.883616 0.468211i \(-0.844899\pi\)
−0.883616 + 0.468211i \(0.844899\pi\)
\(774\) 0 0
\(775\) 75.1103 2.69804
\(776\) 0 0
\(777\) −29.2197 −1.04825
\(778\) 0 0
\(779\) −19.2366 −0.689222
\(780\) 0 0
\(781\) −1.13294 −0.0405398
\(782\) 0 0
\(783\) 0.941947 0.0336624
\(784\) 0 0
\(785\) −35.1978 −1.25626
\(786\) 0 0
\(787\) −12.3426 −0.439968 −0.219984 0.975503i \(-0.570601\pi\)
−0.219984 + 0.975503i \(0.570601\pi\)
\(788\) 0 0
\(789\) −69.4711 −2.47324
\(790\) 0 0
\(791\) −5.48631 −0.195071
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 61.1331 2.16817
\(796\) 0 0
\(797\) −20.5033 −0.726265 −0.363133 0.931737i \(-0.618293\pi\)
−0.363133 + 0.931737i \(0.618293\pi\)
\(798\) 0 0
\(799\) −14.6206 −0.517238
\(800\) 0 0
\(801\) −7.15478 −0.252802
\(802\) 0 0
\(803\) 7.31784 0.258241
\(804\) 0 0
\(805\) 8.78208 0.309528
\(806\) 0 0
\(807\) 78.3498 2.75804
\(808\) 0 0
\(809\) −7.48733 −0.263241 −0.131620 0.991300i \(-0.542018\pi\)
−0.131620 + 0.991300i \(0.542018\pi\)
\(810\) 0 0
\(811\) −22.8692 −0.803048 −0.401524 0.915849i \(-0.631519\pi\)
−0.401524 + 0.915849i \(0.631519\pi\)
\(812\) 0 0
\(813\) 58.7215 2.05945
\(814\) 0 0
\(815\) 46.6719 1.63484
\(816\) 0 0
\(817\) 19.8381 0.694047
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −40.4801 −1.41276 −0.706382 0.707830i \(-0.749674\pi\)
−0.706382 + 0.707830i \(0.749674\pi\)
\(822\) 0 0
\(823\) −22.6962 −0.791139 −0.395570 0.918436i \(-0.629453\pi\)
−0.395570 + 0.918436i \(0.629453\pi\)
\(824\) 0 0
\(825\) 77.3580 2.69326
\(826\) 0 0
\(827\) −15.7414 −0.547383 −0.273691 0.961818i \(-0.588245\pi\)
−0.273691 + 0.961818i \(0.588245\pi\)
\(828\) 0 0
\(829\) 19.6878 0.683785 0.341893 0.939739i \(-0.388932\pi\)
0.341893 + 0.939739i \(0.388932\pi\)
\(830\) 0 0
\(831\) 49.0149 1.70031
\(832\) 0 0
\(833\) 1.63539 0.0566630
\(834\) 0 0
\(835\) 37.8783 1.31083
\(836\) 0 0
\(837\) 2.13229 0.0737029
\(838\) 0 0
\(839\) −2.20420 −0.0760974 −0.0380487 0.999276i \(-0.512114\pi\)
−0.0380487 + 0.999276i \(0.512114\pi\)
\(840\) 0 0
\(841\) −12.7605 −0.440017
\(842\) 0 0
\(843\) −58.3325 −2.00908
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.95183 −0.135787
\(848\) 0 0
\(849\) −32.9323 −1.13023
\(850\) 0 0
\(851\) 29.0314 0.995184
\(852\) 0 0
\(853\) −2.60526 −0.0892026 −0.0446013 0.999005i \(-0.514202\pi\)
−0.0446013 + 0.999005i \(0.514202\pi\)
\(854\) 0 0
\(855\) −21.2515 −0.726785
\(856\) 0 0
\(857\) 33.0023 1.12734 0.563668 0.826001i \(-0.309390\pi\)
0.563668 + 0.826001i \(0.309390\pi\)
\(858\) 0 0
\(859\) 17.0404 0.581411 0.290706 0.956813i \(-0.406110\pi\)
0.290706 + 0.956813i \(0.406110\pi\)
\(860\) 0 0
\(861\) 23.2333 0.791790
\(862\) 0 0
\(863\) 1.85114 0.0630134 0.0315067 0.999504i \(-0.489969\pi\)
0.0315067 + 0.999504i \(0.489969\pi\)
\(864\) 0 0
\(865\) 44.3006 1.50626
\(866\) 0 0
\(867\) 34.8077 1.18213
\(868\) 0 0
\(869\) −19.8322 −0.672762
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 50.7457 1.71748
\(874\) 0 0
\(875\) −11.7634 −0.397675
\(876\) 0 0
\(877\) −11.1915 −0.377910 −0.188955 0.981986i \(-0.560510\pi\)
−0.188955 + 0.981986i \(0.560510\pi\)
\(878\) 0 0
\(879\) 34.6824 1.16981
\(880\) 0 0
\(881\) 18.7951 0.633222 0.316611 0.948555i \(-0.397455\pi\)
0.316611 + 0.948555i \(0.397455\pi\)
\(882\) 0 0
\(883\) 7.53316 0.253511 0.126756 0.991934i \(-0.459544\pi\)
0.126756 + 0.991934i \(0.459544\pi\)
\(884\) 0 0
\(885\) −1.01872 −0.0342437
\(886\) 0 0
\(887\) 27.7461 0.931622 0.465811 0.884884i \(-0.345763\pi\)
0.465811 + 0.884884i \(0.345763\pi\)
\(888\) 0 0
\(889\) 12.0811 0.405187
\(890\) 0 0
\(891\) 35.8810 1.20206
\(892\) 0 0
\(893\) 17.9856 0.601864
\(894\) 0 0
\(895\) 1.70256 0.0569103
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 36.7616 1.22607
\(900\) 0 0
\(901\) −11.3108 −0.376817
\(902\) 0 0
\(903\) −23.9598 −0.797333
\(904\) 0 0
\(905\) 74.2514 2.46820
\(906\) 0 0
\(907\) 12.6722 0.420775 0.210388 0.977618i \(-0.432527\pi\)
0.210388 + 0.977618i \(0.432527\pi\)
\(908\) 0 0
\(909\) −29.8584 −0.990341
\(910\) 0 0
\(911\) 53.8605 1.78448 0.892239 0.451564i \(-0.149134\pi\)
0.892239 + 0.451564i \(0.149134\pi\)
\(912\) 0 0
\(913\) 45.6316 1.51019
\(914\) 0 0
\(915\) 43.6715 1.44374
\(916\) 0 0
\(917\) −3.82950 −0.126461
\(918\) 0 0
\(919\) 29.6096 0.976730 0.488365 0.872639i \(-0.337593\pi\)
0.488365 + 0.872639i \(0.337593\pi\)
\(920\) 0 0
\(921\) 68.7100 2.26407
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −99.0155 −3.25561
\(926\) 0 0
\(927\) −20.8240 −0.683949
\(928\) 0 0
\(929\) −46.5045 −1.52576 −0.762881 0.646538i \(-0.776216\pi\)
−0.762881 + 0.646538i \(0.776216\pi\)
\(930\) 0 0
\(931\) −2.01179 −0.0659337
\(932\) 0 0
\(933\) 16.6873 0.546317
\(934\) 0 0
\(935\) −23.0043 −0.752322
\(936\) 0 0
\(937\) 25.7685 0.841821 0.420911 0.907102i \(-0.361711\pi\)
0.420911 + 0.907102i \(0.361711\pi\)
\(938\) 0 0
\(939\) 48.2252 1.57377
\(940\) 0 0
\(941\) −51.0205 −1.66322 −0.831610 0.555360i \(-0.812580\pi\)
−0.831610 + 0.555360i \(0.812580\pi\)
\(942\) 0 0
\(943\) −23.0836 −0.751705
\(944\) 0 0
\(945\) −0.850315 −0.0276607
\(946\) 0 0
\(947\) −9.50717 −0.308941 −0.154471 0.987997i \(-0.549367\pi\)
−0.154471 + 0.987997i \(0.549367\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 80.6023 2.61371
\(952\) 0 0
\(953\) −13.8901 −0.449946 −0.224973 0.974365i \(-0.572229\pi\)
−0.224973 + 0.974365i \(0.572229\pi\)
\(954\) 0 0
\(955\) −12.6925 −0.410720
\(956\) 0 0
\(957\) 37.8616 1.22389
\(958\) 0 0
\(959\) 6.31957 0.204070
\(960\) 0 0
\(961\) 52.2175 1.68444
\(962\) 0 0
\(963\) 43.5068 1.40199
\(964\) 0 0
\(965\) −12.5331 −0.403456
\(966\) 0 0
\(967\) 30.4473 0.979120 0.489560 0.871970i \(-0.337157\pi\)
0.489560 + 0.871970i \(0.337157\pi\)
\(968\) 0 0
\(969\) 7.99412 0.256808
\(970\) 0 0
\(971\) 13.7799 0.442218 0.221109 0.975249i \(-0.429032\pi\)
0.221109 + 0.975249i \(0.429032\pi\)
\(972\) 0 0
\(973\) 2.68186 0.0859764
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.43321 −0.0458524 −0.0229262 0.999737i \(-0.507298\pi\)
−0.0229262 + 0.999737i \(0.507298\pi\)
\(978\) 0 0
\(979\) 9.52745 0.304499
\(980\) 0 0
\(981\) −25.6235 −0.818096
\(982\) 0 0
\(983\) −31.6454 −1.00933 −0.504665 0.863315i \(-0.668384\pi\)
−0.504665 + 0.863315i \(0.668384\pi\)
\(984\) 0 0
\(985\) −45.9198 −1.46313
\(986\) 0 0
\(987\) −21.7224 −0.691431
\(988\) 0 0
\(989\) 23.8054 0.756967
\(990\) 0 0
\(991\) −5.49055 −0.174413 −0.0872066 0.996190i \(-0.527794\pi\)
−0.0872066 + 0.996190i \(0.527794\pi\)
\(992\) 0 0
\(993\) −40.4905 −1.28493
\(994\) 0 0
\(995\) −40.1858 −1.27397
\(996\) 0 0
\(997\) 24.4403 0.774033 0.387016 0.922073i \(-0.373506\pi\)
0.387016 + 0.922073i \(0.373506\pi\)
\(998\) 0 0
\(999\) −2.81093 −0.0889340
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.s.1.2 8
13.2 odd 12 364.2.u.a.225.7 16
13.5 odd 4 4732.2.g.k.337.3 16
13.7 odd 12 364.2.u.a.309.7 yes 16
13.8 odd 4 4732.2.g.k.337.4 16
13.12 even 2 4732.2.a.t.1.2 8
39.2 even 12 3276.2.cf.c.2773.8 16
39.20 even 12 3276.2.cf.c.1765.1 16
52.7 even 12 1456.2.cc.f.673.2 16
52.15 even 12 1456.2.cc.f.225.2 16
91.2 odd 12 2548.2.bb.d.1733.7 16
91.20 even 12 2548.2.u.c.1765.2 16
91.33 even 12 2548.2.bq.c.361.7 16
91.41 even 12 2548.2.u.c.589.2 16
91.46 odd 12 2548.2.bb.d.569.7 16
91.54 even 12 2548.2.bb.c.1733.2 16
91.59 even 12 2548.2.bb.c.569.2 16
91.67 odd 12 2548.2.bq.e.1941.2 16
91.72 odd 12 2548.2.bq.e.361.2 16
91.80 even 12 2548.2.bq.c.1941.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.7 16 13.2 odd 12
364.2.u.a.309.7 yes 16 13.7 odd 12
1456.2.cc.f.225.2 16 52.15 even 12
1456.2.cc.f.673.2 16 52.7 even 12
2548.2.u.c.589.2 16 91.41 even 12
2548.2.u.c.1765.2 16 91.20 even 12
2548.2.bb.c.569.2 16 91.59 even 12
2548.2.bb.c.1733.2 16 91.54 even 12
2548.2.bb.d.569.7 16 91.46 odd 12
2548.2.bb.d.1733.7 16 91.2 odd 12
2548.2.bq.c.361.7 16 91.33 even 12
2548.2.bq.c.1941.7 16 91.80 even 12
2548.2.bq.e.361.2 16 91.72 odd 12
2548.2.bq.e.1941.2 16 91.67 odd 12
3276.2.cf.c.1765.1 16 39.20 even 12
3276.2.cf.c.2773.8 16 39.2 even 12
4732.2.a.s.1.2 8 1.1 even 1 trivial
4732.2.a.t.1.2 8 13.12 even 2
4732.2.g.k.337.3 16 13.5 odd 4
4732.2.g.k.337.4 16 13.8 odd 4