Properties

Label 1456.2.cc.f.673.2
Level $1456$
Weight $2$
Character 1456.673
Analytic conductor $11.626$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1456,2,Mod(225,1456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1456, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1456.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.2
Root \(2.42977i\) of defining polynomial
Character \(\chi\) \(=\) 1456.673
Dual form 1456.2.cc.f.225.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21489 - 2.10425i) q^{3} +3.63781i q^{5} +(0.866025 + 0.500000i) q^{7} +(-1.45190 + 2.51476i) q^{9} +(-3.34871 + 1.93338i) q^{11} +(-3.58920 - 0.342967i) q^{13} +(7.65484 - 4.41953i) q^{15} +(0.817697 - 1.41629i) q^{17} +(-1.74226 - 1.00589i) q^{19} -2.42977i q^{21} +(1.20706 + 2.09068i) q^{23} -8.23365 q^{25} -0.233744 q^{27} +(-2.01491 - 3.48993i) q^{29} -9.12236i q^{31} +(8.13661 + 4.69768i) q^{33} +(-1.81890 + 3.15043i) q^{35} +(10.4146 - 6.01285i) q^{37} +(3.63879 + 7.96923i) q^{39} +(8.28088 - 4.78097i) q^{41} +(4.93046 - 8.53981i) q^{43} +(-9.14823 - 5.28173i) q^{45} -8.94009i q^{47} +(0.500000 + 0.866025i) q^{49} -3.97364 q^{51} -6.91625 q^{53} +(-7.03327 - 12.1820i) q^{55} +4.88819i q^{57} +(-0.0998109 - 0.0576258i) q^{59} +(2.47037 - 4.27881i) q^{61} +(-2.51476 + 1.45190i) q^{63} +(1.24765 - 13.0568i) q^{65} +(-7.89684 + 4.55925i) q^{67} +(2.93287 - 5.07988i) q^{69} +(0.253741 + 0.146497i) q^{71} +1.89250i q^{73} +(10.0030 + 17.3256i) q^{75} -3.86676 q^{77} -5.12890 q^{79} +(4.63967 + 8.03615i) q^{81} +11.8010i q^{83} +(5.15220 + 2.97463i) q^{85} +(-4.89578 + 8.47975i) q^{87} +(2.13383 - 1.23197i) q^{89} +(-2.93686 - 2.09162i) q^{91} +(-19.1957 + 11.0826i) q^{93} +(3.65925 - 6.33801i) q^{95} +(-15.1343 - 8.73781i) q^{97} -11.2283i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} - 6 q^{11} + 10 q^{13} - 6 q^{15} + 2 q^{17} - 44 q^{25} + 12 q^{27} - 22 q^{29} + 42 q^{33} + 6 q^{35} + 12 q^{37} - 24 q^{39} + 36 q^{41} - 6 q^{43} - 30 q^{45} + 8 q^{49} + 4 q^{51} + 8 q^{53}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.21489 2.10425i −0.701415 1.21489i −0.967970 0.251067i \(-0.919219\pi\)
0.266554 0.963820i \(-0.414115\pi\)
\(4\) 0 0
\(5\) 3.63781i 1.62688i 0.581651 + 0.813439i \(0.302407\pi\)
−0.581651 + 0.813439i \(0.697593\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 0 0
\(9\) −1.45190 + 2.51476i −0.483967 + 0.838255i
\(10\) 0 0
\(11\) −3.34871 + 1.93338i −1.00967 + 0.582936i −0.911096 0.412193i \(-0.864763\pi\)
−0.0985783 + 0.995129i \(0.531430\pi\)
\(12\) 0 0
\(13\) −3.58920 0.342967i −0.995466 0.0951220i
\(14\) 0 0
\(15\) 7.65484 4.41953i 1.97647 1.14112i
\(16\) 0 0
\(17\) 0.817697 1.41629i 0.198321 0.343501i −0.749663 0.661819i \(-0.769785\pi\)
0.947984 + 0.318318i \(0.103118\pi\)
\(18\) 0 0
\(19\) −1.74226 1.00589i −0.399702 0.230768i 0.286654 0.958034i \(-0.407457\pi\)
−0.686355 + 0.727266i \(0.740790\pi\)
\(20\) 0 0
\(21\) 2.42977i 0.530220i
\(22\) 0 0
\(23\) 1.20706 + 2.09068i 0.251689 + 0.435937i 0.963991 0.265935i \(-0.0856808\pi\)
−0.712302 + 0.701873i \(0.752347\pi\)
\(24\) 0 0
\(25\) −8.23365 −1.64673
\(26\) 0 0
\(27\) −0.233744 −0.0449840
\(28\) 0 0
\(29\) −2.01491 3.48993i −0.374160 0.648064i 0.616041 0.787714i \(-0.288736\pi\)
−0.990201 + 0.139650i \(0.955402\pi\)
\(30\) 0 0
\(31\) 9.12236i 1.63842i −0.573490 0.819212i \(-0.694411\pi\)
0.573490 0.819212i \(-0.305589\pi\)
\(32\) 0 0
\(33\) 8.13661 + 4.69768i 1.41640 + 0.817760i
\(34\) 0 0
\(35\) −1.81890 + 3.15043i −0.307451 + 0.532521i
\(36\) 0 0
\(37\) 10.4146 6.01285i 1.71214 0.988507i 0.780485 0.625175i \(-0.214972\pi\)
0.931660 0.363332i \(-0.118361\pi\)
\(38\) 0 0
\(39\) 3.63879 + 7.96923i 0.582672 + 1.27610i
\(40\) 0 0
\(41\) 8.28088 4.78097i 1.29326 0.746661i 0.314026 0.949414i \(-0.398322\pi\)
0.979230 + 0.202753i \(0.0649889\pi\)
\(42\) 0 0
\(43\) 4.93046 8.53981i 0.751888 1.30231i −0.195018 0.980800i \(-0.562477\pi\)
0.946906 0.321509i \(-0.104190\pi\)
\(44\) 0 0
\(45\) −9.14823 5.28173i −1.36374 0.787354i
\(46\) 0 0
\(47\) 8.94009i 1.30405i −0.758199 0.652023i \(-0.773921\pi\)
0.758199 0.652023i \(-0.226079\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) −3.97364 −0.556421
\(52\) 0 0
\(53\) −6.91625 −0.950020 −0.475010 0.879980i \(-0.657556\pi\)
−0.475010 + 0.879980i \(0.657556\pi\)
\(54\) 0 0
\(55\) −7.03327 12.1820i −0.948365 1.64262i
\(56\) 0 0
\(57\) 4.88819i 0.647457i
\(58\) 0 0
\(59\) −0.0998109 0.0576258i −0.0129943 0.00750224i 0.493489 0.869752i \(-0.335721\pi\)
−0.506483 + 0.862250i \(0.669055\pi\)
\(60\) 0 0
\(61\) 2.47037 4.27881i 0.316299 0.547846i −0.663414 0.748253i \(-0.730893\pi\)
0.979713 + 0.200407i \(0.0642264\pi\)
\(62\) 0 0
\(63\) −2.51476 + 1.45190i −0.316831 + 0.182922i
\(64\) 0 0
\(65\) 1.24765 13.0568i 0.154752 1.61950i
\(66\) 0 0
\(67\) −7.89684 + 4.55925i −0.964753 + 0.557000i −0.897633 0.440744i \(-0.854715\pi\)
−0.0671204 + 0.997745i \(0.521381\pi\)
\(68\) 0 0
\(69\) 2.93287 5.07988i 0.353076 0.611546i
\(70\) 0 0
\(71\) 0.253741 + 0.146497i 0.0301135 + 0.0173860i 0.514981 0.857201i \(-0.327799\pi\)
−0.484868 + 0.874588i \(0.661132\pi\)
\(72\) 0 0
\(73\) 1.89250i 0.221500i 0.993848 + 0.110750i \(0.0353254\pi\)
−0.993848 + 0.110750i \(0.964675\pi\)
\(74\) 0 0
\(75\) 10.0030 + 17.3256i 1.15504 + 2.00059i
\(76\) 0 0
\(77\) −3.86676 −0.440658
\(78\) 0 0
\(79\) −5.12890 −0.577046 −0.288523 0.957473i \(-0.593164\pi\)
−0.288523 + 0.957473i \(0.593164\pi\)
\(80\) 0 0
\(81\) 4.63967 + 8.03615i 0.515519 + 0.892905i
\(82\) 0 0
\(83\) 11.8010i 1.29533i 0.761926 + 0.647664i \(0.224254\pi\)
−0.761926 + 0.647664i \(0.775746\pi\)
\(84\) 0 0
\(85\) 5.15220 + 2.97463i 0.558835 + 0.322643i
\(86\) 0 0
\(87\) −4.89578 + 8.47975i −0.524883 + 0.909124i
\(88\) 0 0
\(89\) 2.13383 1.23197i 0.226186 0.130588i −0.382625 0.923904i \(-0.624980\pi\)
0.608811 + 0.793315i \(0.291647\pi\)
\(90\) 0 0
\(91\) −2.93686 2.09162i −0.307866 0.219261i
\(92\) 0 0
\(93\) −19.1957 + 11.0826i −1.99050 + 1.14922i
\(94\) 0 0
\(95\) 3.65925 6.33801i 0.375431 0.650266i
\(96\) 0 0
\(97\) −15.1343 8.73781i −1.53666 0.887190i −0.999031 0.0440072i \(-0.985988\pi\)
−0.537627 0.843183i \(-0.680679\pi\)
\(98\) 0 0
\(99\) 11.2283i 1.12849i
\(100\) 0 0
\(101\) −5.14126 8.90493i −0.511575 0.886074i −0.999910 0.0134176i \(-0.995729\pi\)
0.488335 0.872656i \(-0.337604\pi\)
\(102\) 0 0
\(103\) −7.17129 −0.706608 −0.353304 0.935509i \(-0.614942\pi\)
−0.353304 + 0.935509i \(0.614942\pi\)
\(104\) 0 0
\(105\) 8.83905 0.862603
\(106\) 0 0
\(107\) 7.49135 + 12.9754i 0.724216 + 1.25438i 0.959296 + 0.282404i \(0.0911317\pi\)
−0.235079 + 0.971976i \(0.575535\pi\)
\(108\) 0 0
\(109\) 8.82413i 0.845198i −0.906317 0.422599i \(-0.861118\pi\)
0.906317 0.422599i \(-0.138882\pi\)
\(110\) 0 0
\(111\) −25.3050 14.6099i −2.40185 1.38671i
\(112\) 0 0
\(113\) −2.74315 + 4.75128i −0.258054 + 0.446963i −0.965721 0.259584i \(-0.916415\pi\)
0.707666 + 0.706547i \(0.249748\pi\)
\(114\) 0 0
\(115\) −7.60550 + 4.39104i −0.709217 + 0.409466i
\(116\) 0 0
\(117\) 6.07365 8.52805i 0.561509 0.788418i
\(118\) 0 0
\(119\) 1.41629 0.817697i 0.129831 0.0749582i
\(120\) 0 0
\(121\) 1.97592 3.42239i 0.179629 0.311126i
\(122\) 0 0
\(123\) −20.1207 11.6167i −1.81422 1.04744i
\(124\) 0 0
\(125\) 11.7634i 1.05215i
\(126\) 0 0
\(127\) 6.04055 + 10.4625i 0.536012 + 0.928401i 0.999114 + 0.0420953i \(0.0134033\pi\)
−0.463101 + 0.886305i \(0.653263\pi\)
\(128\) 0 0
\(129\) −23.9598 −2.10954
\(130\) 0 0
\(131\) −3.82950 −0.334585 −0.167293 0.985907i \(-0.553502\pi\)
−0.167293 + 0.985907i \(0.553502\pi\)
\(132\) 0 0
\(133\) −1.00589 1.74226i −0.0872221 0.151073i
\(134\) 0 0
\(135\) 0.850315i 0.0731834i
\(136\) 0 0
\(137\) −5.47291 3.15979i −0.467582 0.269959i 0.247645 0.968851i \(-0.420343\pi\)
−0.715227 + 0.698892i \(0.753677\pi\)
\(138\) 0 0
\(139\) −1.34093 + 2.32256i −0.113736 + 0.196997i −0.917274 0.398257i \(-0.869615\pi\)
0.803538 + 0.595254i \(0.202948\pi\)
\(140\) 0 0
\(141\) −18.8121 + 10.8612i −1.58427 + 0.914677i
\(142\) 0 0
\(143\) 12.6823 5.79079i 1.06055 0.484250i
\(144\) 0 0
\(145\) 12.6957 7.32987i 1.05432 0.608713i
\(146\) 0 0
\(147\) 1.21489 2.10425i 0.100202 0.173555i
\(148\) 0 0
\(149\) 13.4850 + 7.78555i 1.10473 + 0.637817i 0.937460 0.348093i \(-0.113171\pi\)
0.167272 + 0.985911i \(0.446504\pi\)
\(150\) 0 0
\(151\) 15.7761i 1.28384i −0.766771 0.641920i \(-0.778138\pi\)
0.766771 0.641920i \(-0.221862\pi\)
\(152\) 0 0
\(153\) 2.37443 + 4.11263i 0.191961 + 0.332487i
\(154\) 0 0
\(155\) 33.1854 2.66552
\(156\) 0 0
\(157\) −9.67555 −0.772193 −0.386096 0.922458i \(-0.626177\pi\)
−0.386096 + 0.922458i \(0.626177\pi\)
\(158\) 0 0
\(159\) 8.40246 + 14.5535i 0.666359 + 1.15417i
\(160\) 0 0
\(161\) 2.41411i 0.190259i
\(162\) 0 0
\(163\) −11.1108 6.41483i −0.870266 0.502448i −0.00282942 0.999996i \(-0.500901\pi\)
−0.867437 + 0.497548i \(0.834234\pi\)
\(164\) 0 0
\(165\) −17.0892 + 29.5994i −1.33040 + 2.30431i
\(166\) 0 0
\(167\) 9.01741 5.20620i 0.697788 0.402868i −0.108735 0.994071i \(-0.534680\pi\)
0.806523 + 0.591203i \(0.201347\pi\)
\(168\) 0 0
\(169\) 12.7647 + 2.46196i 0.981904 + 0.189381i
\(170\) 0 0
\(171\) 5.05917 2.92092i 0.386885 0.223368i
\(172\) 0 0
\(173\) 6.08891 10.5463i 0.462931 0.801820i −0.536174 0.844107i \(-0.680131\pi\)
0.999106 + 0.0422871i \(0.0134644\pi\)
\(174\) 0 0
\(175\) −7.13055 4.11682i −0.539019 0.311203i
\(176\) 0 0
\(177\) 0.280035i 0.0210488i
\(178\) 0 0
\(179\) −0.234009 0.405316i −0.0174907 0.0302947i 0.857148 0.515071i \(-0.172234\pi\)
−0.874638 + 0.484776i \(0.838901\pi\)
\(180\) 0 0
\(181\) −20.4110 −1.51714 −0.758570 0.651592i \(-0.774102\pi\)
−0.758570 + 0.651592i \(0.774102\pi\)
\(182\) 0 0
\(183\) −12.0049 −0.887427
\(184\) 0 0
\(185\) 21.8736 + 37.8862i 1.60818 + 2.78545i
\(186\) 0 0
\(187\) 6.32368i 0.462433i
\(188\) 0 0
\(189\) −0.202428 0.116872i −0.0147245 0.00850118i
\(190\) 0 0
\(191\) −1.74453 + 3.02161i −0.126230 + 0.218636i −0.922213 0.386683i \(-0.873621\pi\)
0.795983 + 0.605319i \(0.206954\pi\)
\(192\) 0 0
\(193\) 2.98367 1.72262i 0.214769 0.123997i −0.388757 0.921340i \(-0.627095\pi\)
0.603526 + 0.797343i \(0.293762\pi\)
\(194\) 0 0
\(195\) −28.9905 + 13.2372i −2.07606 + 0.947936i
\(196\) 0 0
\(197\) −10.9318 + 6.31147i −0.778857 + 0.449674i −0.836025 0.548691i \(-0.815126\pi\)
0.0571678 + 0.998365i \(0.481793\pi\)
\(198\) 0 0
\(199\) 5.52335 9.56672i 0.391540 0.678167i −0.601113 0.799164i \(-0.705276\pi\)
0.992653 + 0.120997i \(0.0386091\pi\)
\(200\) 0 0
\(201\) 19.1875 + 11.0779i 1.35339 + 0.781377i
\(202\) 0 0
\(203\) 4.02983i 0.282838i
\(204\) 0 0
\(205\) 17.3922 + 30.1242i 1.21473 + 2.10397i
\(206\) 0 0
\(207\) −7.01010 −0.487236
\(208\) 0 0
\(209\) 7.77910 0.538092
\(210\) 0 0
\(211\) −0.502843 0.870949i −0.0346171 0.0599586i 0.848198 0.529680i \(-0.177688\pi\)
−0.882815 + 0.469721i \(0.844355\pi\)
\(212\) 0 0
\(213\) 0.711910i 0.0487793i
\(214\) 0 0
\(215\) 31.0662 + 17.9361i 2.11870 + 1.22323i
\(216\) 0 0
\(217\) 4.56118 7.90020i 0.309633 0.536300i
\(218\) 0 0
\(219\) 3.98229 2.29917i 0.269098 0.155364i
\(220\) 0 0
\(221\) −3.42062 + 4.80292i −0.230096 + 0.323079i
\(222\) 0 0
\(223\) 19.3153 11.1517i 1.29345 0.746773i 0.314185 0.949362i \(-0.398269\pi\)
0.979264 + 0.202589i \(0.0649355\pi\)
\(224\) 0 0
\(225\) 11.9544 20.7057i 0.796962 1.38038i
\(226\) 0 0
\(227\) −13.8976 8.02375i −0.922413 0.532555i −0.0380088 0.999277i \(-0.512101\pi\)
−0.884404 + 0.466722i \(0.845435\pi\)
\(228\) 0 0
\(229\) 12.2285i 0.808082i 0.914741 + 0.404041i \(0.132395\pi\)
−0.914741 + 0.404041i \(0.867605\pi\)
\(230\) 0 0
\(231\) 4.69768 + 8.13661i 0.309084 + 0.535350i
\(232\) 0 0
\(233\) −7.66467 −0.502129 −0.251065 0.967970i \(-0.580781\pi\)
−0.251065 + 0.967970i \(0.580781\pi\)
\(234\) 0 0
\(235\) 32.5223 2.12152
\(236\) 0 0
\(237\) 6.23103 + 10.7925i 0.404749 + 0.701046i
\(238\) 0 0
\(239\) 9.63081i 0.622965i 0.950252 + 0.311483i \(0.100826\pi\)
−0.950252 + 0.311483i \(0.899174\pi\)
\(240\) 0 0
\(241\) −0.123908 0.0715383i −0.00798162 0.00460819i 0.496004 0.868320i \(-0.334800\pi\)
−0.503986 + 0.863712i \(0.668134\pi\)
\(242\) 0 0
\(243\) 10.9227 18.9187i 0.700694 1.21364i
\(244\) 0 0
\(245\) −3.15043 + 1.81890i −0.201274 + 0.116206i
\(246\) 0 0
\(247\) 5.90833 + 4.20790i 0.375938 + 0.267742i
\(248\) 0 0
\(249\) 24.8322 14.3369i 1.57368 0.908563i
\(250\) 0 0
\(251\) −5.10237 + 8.83756i −0.322059 + 0.557822i −0.980913 0.194449i \(-0.937708\pi\)
0.658854 + 0.752271i \(0.271041\pi\)
\(252\) 0 0
\(253\) −8.08417 4.66740i −0.508247 0.293437i
\(254\) 0 0
\(255\) 14.4553i 0.905228i
\(256\) 0 0
\(257\) −10.0797 17.4586i −0.628756 1.08904i −0.987802 0.155718i \(-0.950231\pi\)
0.359045 0.933320i \(-0.383102\pi\)
\(258\) 0 0
\(259\) 12.0257 0.747241
\(260\) 0 0
\(261\) 11.7018 0.724324
\(262\) 0 0
\(263\) 14.2958 + 24.7610i 0.881516 + 1.52683i 0.849655 + 0.527338i \(0.176810\pi\)
0.0318605 + 0.999492i \(0.489857\pi\)
\(264\) 0 0
\(265\) 25.1600i 1.54557i
\(266\) 0 0
\(267\) −5.18473 2.99340i −0.317300 0.183193i
\(268\) 0 0
\(269\) 16.1229 27.9256i 0.983028 1.70266i 0.332639 0.943054i \(-0.392061\pi\)
0.650389 0.759601i \(-0.274606\pi\)
\(270\) 0 0
\(271\) −20.9296 + 12.0837i −1.27139 + 0.734035i −0.975249 0.221111i \(-0.929032\pi\)
−0.296137 + 0.955146i \(0.595698\pi\)
\(272\) 0 0
\(273\) −0.833333 + 8.72095i −0.0504356 + 0.527816i
\(274\) 0 0
\(275\) 27.5721 15.9188i 1.66266 0.959938i
\(276\) 0 0
\(277\) −10.0863 + 17.4700i −0.606027 + 1.04967i 0.385861 + 0.922557i \(0.373905\pi\)
−0.991888 + 0.127113i \(0.959429\pi\)
\(278\) 0 0
\(279\) 22.9406 + 13.2448i 1.37342 + 0.792943i
\(280\) 0 0
\(281\) 24.0074i 1.43216i −0.698018 0.716080i \(-0.745934\pi\)
0.698018 0.716080i \(-0.254066\pi\)
\(282\) 0 0
\(283\) −6.77682 11.7378i −0.402840 0.697739i 0.591227 0.806505i \(-0.298644\pi\)
−0.994067 + 0.108765i \(0.965310\pi\)
\(284\) 0 0
\(285\) −17.7823 −1.05333
\(286\) 0 0
\(287\) 9.56193 0.564423
\(288\) 0 0
\(289\) 7.16274 + 12.4062i 0.421338 + 0.729779i
\(290\) 0 0
\(291\) 42.4618i 2.48915i
\(292\) 0 0
\(293\) −12.3616 7.13696i −0.722171 0.416945i 0.0933803 0.995631i \(-0.470233\pi\)
−0.815551 + 0.578685i \(0.803566\pi\)
\(294\) 0 0
\(295\) 0.209632 0.363093i 0.0122052 0.0211401i
\(296\) 0 0
\(297\) 0.782740 0.451915i 0.0454192 0.0262228i
\(298\) 0 0
\(299\) −3.61533 7.91786i −0.209080 0.457902i
\(300\) 0 0
\(301\) 8.53981 4.93046i 0.492226 0.284187i
\(302\) 0 0
\(303\) −12.4921 + 21.6370i −0.717653 + 1.24301i
\(304\) 0 0
\(305\) 15.5655 + 8.98674i 0.891278 + 0.514579i
\(306\) 0 0
\(307\) 28.2784i 1.61393i −0.590598 0.806966i \(-0.701108\pi\)
0.590598 0.806966i \(-0.298892\pi\)
\(308\) 0 0
\(309\) 8.71230 + 15.0901i 0.495626 + 0.858449i
\(310\) 0 0
\(311\) −6.86783 −0.389439 −0.194719 0.980859i \(-0.562380\pi\)
−0.194719 + 0.980859i \(0.562380\pi\)
\(312\) 0 0
\(313\) −19.8476 −1.12185 −0.560927 0.827865i \(-0.689555\pi\)
−0.560927 + 0.827865i \(0.689555\pi\)
\(314\) 0 0
\(315\) −5.28173 9.14823i −0.297592 0.515444i
\(316\) 0 0
\(317\) 33.1727i 1.86317i −0.363527 0.931584i \(-0.618428\pi\)
0.363527 0.931584i \(-0.381572\pi\)
\(318\) 0 0
\(319\) 13.4947 + 7.79119i 0.755560 + 0.436223i
\(320\) 0 0
\(321\) 18.2023 31.5273i 1.01595 1.75968i
\(322\) 0 0
\(323\) −2.84928 + 1.64503i −0.158538 + 0.0915321i
\(324\) 0 0
\(325\) 29.5522 + 2.82387i 1.63926 + 0.156640i
\(326\) 0 0
\(327\) −18.5681 + 10.7203i −1.02682 + 0.592835i
\(328\) 0 0
\(329\) 4.47004 7.74234i 0.246441 0.426849i
\(330\) 0 0
\(331\) 14.4317 + 8.33216i 0.793239 + 0.457977i 0.841102 0.540877i \(-0.181908\pi\)
−0.0478625 + 0.998854i \(0.515241\pi\)
\(332\) 0 0
\(333\) 34.9203i 1.91362i
\(334\) 0 0
\(335\) −16.5857 28.7272i −0.906171 1.56953i
\(336\) 0 0
\(337\) 2.84905 0.155198 0.0775989 0.996985i \(-0.475275\pi\)
0.0775989 + 0.996985i \(0.475275\pi\)
\(338\) 0 0
\(339\) 13.3305 0.724013
\(340\) 0 0
\(341\) 17.6370 + 30.5482i 0.955097 + 1.65428i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 18.4796 + 10.6692i 0.994911 + 0.574412i
\(346\) 0 0
\(347\) −6.81743 + 11.8081i −0.365979 + 0.633894i −0.988933 0.148364i \(-0.952599\pi\)
0.622954 + 0.782259i \(0.285932\pi\)
\(348\) 0 0
\(349\) 2.05749 1.18789i 0.110135 0.0635864i −0.443921 0.896066i \(-0.646413\pi\)
0.554056 + 0.832480i \(0.313080\pi\)
\(350\) 0 0
\(351\) 0.838953 + 0.0801665i 0.0447800 + 0.00427897i
\(352\) 0 0
\(353\) −0.236165 + 0.136350i −0.0125698 + 0.00725717i −0.506272 0.862374i \(-0.668977\pi\)
0.493702 + 0.869631i \(0.335643\pi\)
\(354\) 0 0
\(355\) −0.532929 + 0.923060i −0.0282849 + 0.0489909i
\(356\) 0 0
\(357\) −3.44127 1.98682i −0.182131 0.105154i
\(358\) 0 0
\(359\) 2.41260i 0.127332i −0.997971 0.0636661i \(-0.979721\pi\)
0.997971 0.0636661i \(-0.0202793\pi\)
\(360\) 0 0
\(361\) −7.47635 12.9494i −0.393492 0.681549i
\(362\) 0 0
\(363\) −9.60206 −0.503977
\(364\) 0 0
\(365\) −6.88455 −0.360354
\(366\) 0 0
\(367\) 13.5691 + 23.5025i 0.708304 + 1.22682i 0.965486 + 0.260455i \(0.0838726\pi\)
−0.257182 + 0.966363i \(0.582794\pi\)
\(368\) 0 0
\(369\) 27.7659i 1.44544i
\(370\) 0 0
\(371\) −5.98965 3.45813i −0.310967 0.179537i
\(372\) 0 0
\(373\) −14.1563 + 24.5195i −0.732988 + 1.26957i 0.222613 + 0.974907i \(0.428541\pi\)
−0.955601 + 0.294665i \(0.904792\pi\)
\(374\) 0 0
\(375\) −24.7531 + 14.2912i −1.27824 + 0.737994i
\(376\) 0 0
\(377\) 6.03500 + 13.2171i 0.310818 + 0.680717i
\(378\) 0 0
\(379\) 16.3298 9.42802i 0.838806 0.484285i −0.0180520 0.999837i \(-0.505746\pi\)
0.856858 + 0.515552i \(0.172413\pi\)
\(380\) 0 0
\(381\) 14.6772 25.4216i 0.751935 1.30239i
\(382\) 0 0
\(383\) −33.3217 19.2383i −1.70266 0.983031i −0.943049 0.332654i \(-0.892056\pi\)
−0.759611 0.650377i \(-0.774611\pi\)
\(384\) 0 0
\(385\) 14.0665i 0.716897i
\(386\) 0 0
\(387\) 14.3171 + 24.7979i 0.727778 + 1.26055i
\(388\) 0 0
\(389\) 25.6279 1.29938 0.649692 0.760198i \(-0.274898\pi\)
0.649692 + 0.760198i \(0.274898\pi\)
\(390\) 0 0
\(391\) 3.94802 0.199660
\(392\) 0 0
\(393\) 4.65241 + 8.05822i 0.234683 + 0.406483i
\(394\) 0 0
\(395\) 18.6579i 0.938783i
\(396\) 0 0
\(397\) 5.80052 + 3.34893i 0.291120 + 0.168078i 0.638447 0.769666i \(-0.279577\pi\)
−0.347327 + 0.937744i \(0.612911\pi\)
\(398\) 0 0
\(399\) −2.44409 + 4.23330i −0.122358 + 0.211930i
\(400\) 0 0
\(401\) −17.7884 + 10.2701i −0.888308 + 0.512865i −0.873389 0.487024i \(-0.838082\pi\)
−0.0149193 + 0.999889i \(0.504749\pi\)
\(402\) 0 0
\(403\) −3.12867 + 32.7420i −0.155850 + 1.63100i
\(404\) 0 0
\(405\) −29.2340 + 16.8782i −1.45265 + 0.838686i
\(406\) 0 0
\(407\) −23.2503 + 40.2706i −1.15247 + 1.99614i
\(408\) 0 0
\(409\) −12.7030 7.33410i −0.628125 0.362648i 0.151901 0.988396i \(-0.451461\pi\)
−0.780025 + 0.625748i \(0.784794\pi\)
\(410\) 0 0
\(411\) 15.3551i 0.757413i
\(412\) 0 0
\(413\) −0.0576258 0.0998109i −0.00283558 0.00491137i
\(414\) 0 0
\(415\) −42.9298 −2.10734
\(416\) 0 0
\(417\) 6.51631 0.319105
\(418\) 0 0
\(419\) 13.4409 + 23.2803i 0.656631 + 1.13732i 0.981482 + 0.191553i \(0.0613525\pi\)
−0.324851 + 0.945765i \(0.605314\pi\)
\(420\) 0 0
\(421\) 4.54437i 0.221479i −0.993849 0.110739i \(-0.964678\pi\)
0.993849 0.110739i \(-0.0353219\pi\)
\(422\) 0 0
\(423\) 22.4822 + 12.9801i 1.09312 + 0.631115i
\(424\) 0 0
\(425\) −6.73263 + 11.6613i −0.326581 + 0.565654i
\(426\) 0 0
\(427\) 4.27881 2.47037i 0.207066 0.119550i
\(428\) 0 0
\(429\) −27.5928 19.6515i −1.33219 0.948783i
\(430\) 0 0
\(431\) 10.6699 6.16025i 0.513949 0.296729i −0.220506 0.975386i \(-0.570771\pi\)
0.734456 + 0.678657i \(0.237438\pi\)
\(432\) 0 0
\(433\) −12.2232 + 21.1711i −0.587408 + 1.01742i 0.407163 + 0.913356i \(0.366518\pi\)
−0.994571 + 0.104064i \(0.966815\pi\)
\(434\) 0 0
\(435\) −30.8477 17.8099i −1.47903 0.853921i
\(436\) 0 0
\(437\) 4.85668i 0.232327i
\(438\) 0 0
\(439\) −2.65283 4.59484i −0.126613 0.219300i 0.795749 0.605626i \(-0.207077\pi\)
−0.922362 + 0.386326i \(0.873744\pi\)
\(440\) 0 0
\(441\) −2.90380 −0.138276
\(442\) 0 0
\(443\) 1.26200 0.0599596 0.0299798 0.999551i \(-0.490456\pi\)
0.0299798 + 0.999551i \(0.490456\pi\)
\(444\) 0 0
\(445\) 4.48166 + 7.76247i 0.212451 + 0.367976i
\(446\) 0 0
\(447\) 37.8343i 1.78950i
\(448\) 0 0
\(449\) 20.3862 + 11.7700i 0.962082 + 0.555458i 0.896813 0.442409i \(-0.145876\pi\)
0.0652689 + 0.997868i \(0.479209\pi\)
\(450\) 0 0
\(451\) −18.4868 + 32.0202i −0.870512 + 1.50777i
\(452\) 0 0
\(453\) −33.1968 + 19.1662i −1.55972 + 0.900505i
\(454\) 0 0
\(455\) 7.60891 10.6837i 0.356711 0.500861i
\(456\) 0 0
\(457\) −20.0744 + 11.5900i −0.939043 + 0.542157i −0.889660 0.456623i \(-0.849059\pi\)
−0.0493828 + 0.998780i \(0.515725\pi\)
\(458\) 0 0
\(459\) −0.191132 + 0.331050i −0.00892126 + 0.0154521i
\(460\) 0 0
\(461\) −31.1249 17.9700i −1.44963 0.836945i −0.451173 0.892437i \(-0.648994\pi\)
−0.998459 + 0.0554911i \(0.982328\pi\)
\(462\) 0 0
\(463\) 12.9147i 0.600197i −0.953908 0.300098i \(-0.902981\pi\)
0.953908 0.300098i \(-0.0970195\pi\)
\(464\) 0 0
\(465\) −40.3165 69.8303i −1.86963 3.23830i
\(466\) 0 0
\(467\) 13.6014 0.629398 0.314699 0.949192i \(-0.398096\pi\)
0.314699 + 0.949192i \(0.398096\pi\)
\(468\) 0 0
\(469\) −9.11849 −0.421053
\(470\) 0 0
\(471\) 11.7547 + 20.3597i 0.541628 + 0.938127i
\(472\) 0 0
\(473\) 38.1298i 1.75321i
\(474\) 0 0
\(475\) 14.3452 + 8.28218i 0.658201 + 0.380012i
\(476\) 0 0
\(477\) 10.0417 17.3927i 0.459778 0.796359i
\(478\) 0 0
\(479\) 17.2765 9.97457i 0.789382 0.455750i −0.0503632 0.998731i \(-0.516038\pi\)
0.839745 + 0.542981i \(0.182705\pi\)
\(480\) 0 0
\(481\) −39.4422 + 18.0095i −1.79841 + 0.821162i
\(482\) 0 0
\(483\) 5.07988 2.93287i 0.231143 0.133450i
\(484\) 0 0
\(485\) 31.7865 55.0558i 1.44335 2.49995i
\(486\) 0 0
\(487\) −16.8866 9.74949i −0.765205 0.441791i 0.0659562 0.997823i \(-0.478990\pi\)
−0.831162 + 0.556031i \(0.812324\pi\)
\(488\) 0 0
\(489\) 31.1732i 1.40970i
\(490\) 0 0
\(491\) −9.52733 16.5018i −0.429962 0.744717i 0.566907 0.823782i \(-0.308140\pi\)
−0.996869 + 0.0790649i \(0.974807\pi\)
\(492\) 0 0
\(493\) −6.59036 −0.296815
\(494\) 0 0
\(495\) 40.8464 1.83591
\(496\) 0 0
\(497\) 0.146497 + 0.253741i 0.00657130 + 0.0113818i
\(498\) 0 0
\(499\) 13.6662i 0.611785i 0.952066 + 0.305892i \(0.0989548\pi\)
−0.952066 + 0.305892i \(0.901045\pi\)
\(500\) 0 0
\(501\) −21.9103 12.6499i −0.978878 0.565156i
\(502\) 0 0
\(503\) −1.15076 + 1.99318i −0.0513100 + 0.0888715i −0.890540 0.454906i \(-0.849673\pi\)
0.839230 + 0.543777i \(0.183006\pi\)
\(504\) 0 0
\(505\) 32.3944 18.7029i 1.44153 0.832270i
\(506\) 0 0
\(507\) −10.3272 29.8512i −0.458645 1.32574i
\(508\) 0 0
\(509\) −19.2737 + 11.1277i −0.854292 + 0.493226i −0.862097 0.506744i \(-0.830849\pi\)
0.00780455 + 0.999970i \(0.497516\pi\)
\(510\) 0 0
\(511\) −0.946250 + 1.63895i −0.0418596 + 0.0725030i
\(512\) 0 0
\(513\) 0.407242 + 0.235121i 0.0179802 + 0.0103809i
\(514\) 0 0
\(515\) 26.0878i 1.14956i
\(516\) 0 0
\(517\) 17.2846 + 29.9378i 0.760175 + 1.31666i
\(518\) 0 0
\(519\) −29.5893 −1.29883
\(520\) 0 0
\(521\) 13.1581 0.576465 0.288233 0.957560i \(-0.406932\pi\)
0.288233 + 0.957560i \(0.406932\pi\)
\(522\) 0 0
\(523\) −19.9028 34.4727i −0.870291 1.50739i −0.861696 0.507425i \(-0.830598\pi\)
−0.00859463 0.999963i \(-0.502736\pi\)
\(524\) 0 0
\(525\) 20.0059i 0.873129i
\(526\) 0 0
\(527\) −12.9199 7.45933i −0.562801 0.324934i
\(528\) 0 0
\(529\) 8.58603 14.8714i 0.373306 0.646584i
\(530\) 0 0
\(531\) 0.289831 0.167334i 0.0125776 0.00726167i
\(532\) 0 0
\(533\) −31.3615 + 14.3198i −1.35842 + 0.620259i
\(534\) 0 0
\(535\) −47.2020 + 27.2521i −2.04072 + 1.17821i
\(536\) 0 0
\(537\) −0.568589 + 0.984825i −0.0245364 + 0.0424983i
\(538\) 0 0
\(539\) −3.34871 1.93338i −0.144239 0.0832766i
\(540\) 0 0
\(541\) 18.7716i 0.807055i −0.914968 0.403527i \(-0.867784\pi\)
0.914968 0.403527i \(-0.132216\pi\)
\(542\) 0 0
\(543\) 24.7971 + 42.9498i 1.06415 + 1.84315i
\(544\) 0 0
\(545\) 32.1005 1.37503
\(546\) 0 0
\(547\) −43.1197 −1.84366 −0.921832 0.387589i \(-0.873308\pi\)
−0.921832 + 0.387589i \(0.873308\pi\)
\(548\) 0 0
\(549\) 7.17347 + 12.4248i 0.306156 + 0.530278i
\(550\) 0 0
\(551\) 8.10716i 0.345377i
\(552\) 0 0
\(553\) −4.44176 2.56445i −0.188883 0.109051i
\(554\) 0 0
\(555\) 53.1479 92.0549i 2.25600 3.90751i
\(556\) 0 0
\(557\) 20.4136 11.7858i 0.864954 0.499381i −0.000714272 1.00000i \(-0.500227\pi\)
0.865668 + 0.500618i \(0.166894\pi\)
\(558\) 0 0
\(559\) −20.6253 + 28.9601i −0.872357 + 1.22488i
\(560\) 0 0
\(561\) 13.3066 7.68255i 0.561804 0.324358i
\(562\) 0 0
\(563\) 12.1363 21.0207i 0.511484 0.885917i −0.488427 0.872605i \(-0.662429\pi\)
0.999911 0.0133121i \(-0.00423750\pi\)
\(564\) 0 0
\(565\) −17.2843 9.97907i −0.727154 0.419823i
\(566\) 0 0
\(567\) 9.27934i 0.389696i
\(568\) 0 0
\(569\) 21.5153 + 37.2656i 0.901969 + 1.56226i 0.824934 + 0.565228i \(0.191212\pi\)
0.0770349 + 0.997028i \(0.475455\pi\)
\(570\) 0 0
\(571\) 10.1365 0.424201 0.212101 0.977248i \(-0.431970\pi\)
0.212101 + 0.977248i \(0.431970\pi\)
\(572\) 0 0
\(573\) 8.47761 0.354157
\(574\) 0 0
\(575\) −9.93848 17.2139i −0.414463 0.717871i
\(576\) 0 0
\(577\) 11.8664i 0.494005i 0.969015 + 0.247003i \(0.0794456\pi\)
−0.969015 + 0.247003i \(0.920554\pi\)
\(578\) 0 0
\(579\) −7.24965 4.18559i −0.301285 0.173947i
\(580\) 0 0
\(581\) −5.90050 + 10.2200i −0.244794 + 0.423996i
\(582\) 0 0
\(583\) 23.1605 13.3717i 0.959211 0.553801i
\(584\) 0 0
\(585\) 31.0234 + 22.0948i 1.28266 + 0.913506i
\(586\) 0 0
\(587\) 19.6614 11.3515i 0.811512 0.468527i −0.0359686 0.999353i \(-0.511452\pi\)
0.847481 + 0.530826i \(0.178118\pi\)
\(588\) 0 0
\(589\) −9.17613 + 15.8935i −0.378096 + 0.654881i
\(590\) 0 0
\(591\) 26.5618 + 15.3354i 1.09260 + 0.630816i
\(592\) 0 0
\(593\) 41.0665i 1.68640i 0.537600 + 0.843200i \(0.319331\pi\)
−0.537600 + 0.843200i \(0.680669\pi\)
\(594\) 0 0
\(595\) 2.97463 + 5.15220i 0.121948 + 0.211220i
\(596\) 0 0
\(597\) −26.8410 −1.09853
\(598\) 0 0
\(599\) 20.8122 0.850362 0.425181 0.905108i \(-0.360211\pi\)
0.425181 + 0.905108i \(0.360211\pi\)
\(600\) 0 0
\(601\) 2.51726 + 4.36002i 0.102681 + 0.177849i 0.912788 0.408433i \(-0.133925\pi\)
−0.810107 + 0.586282i \(0.800591\pi\)
\(602\) 0 0
\(603\) 26.4783i 1.07828i
\(604\) 0 0
\(605\) 12.4500 + 7.18800i 0.506164 + 0.292234i
\(606\) 0 0
\(607\) −4.86938 + 8.43401i −0.197642 + 0.342326i −0.947763 0.318974i \(-0.896662\pi\)
0.750121 + 0.661300i \(0.229995\pi\)
\(608\) 0 0
\(609\) −8.47975 + 4.89578i −0.343617 + 0.198387i
\(610\) 0 0
\(611\) −3.06616 + 32.0878i −0.124043 + 1.29813i
\(612\) 0 0
\(613\) 14.8918 8.59776i 0.601473 0.347260i −0.168148 0.985762i \(-0.553779\pi\)
0.769621 + 0.638501i \(0.220445\pi\)
\(614\) 0 0
\(615\) 42.2592 73.1951i 1.70406 2.95151i
\(616\) 0 0
\(617\) −15.4804 8.93760i −0.623216 0.359814i 0.154904 0.987930i \(-0.450493\pi\)
−0.778120 + 0.628115i \(0.783827\pi\)
\(618\) 0 0
\(619\) 21.3112i 0.856568i 0.903644 + 0.428284i \(0.140882\pi\)
−0.903644 + 0.428284i \(0.859118\pi\)
\(620\) 0 0
\(621\) −0.282142 0.488684i −0.0113220 0.0196102i
\(622\) 0 0
\(623\) 2.46394 0.0987155
\(624\) 0 0
\(625\) 1.62474 0.0649895
\(626\) 0 0
\(627\) −9.45073 16.3691i −0.377426 0.653721i
\(628\) 0 0
\(629\) 19.6668i 0.784166i
\(630\) 0 0
\(631\) 10.9176 + 6.30330i 0.434624 + 0.250930i 0.701315 0.712852i \(-0.252597\pi\)
−0.266691 + 0.963782i \(0.585930\pi\)
\(632\) 0 0
\(633\) −1.22179 + 2.11621i −0.0485620 + 0.0841118i
\(634\) 0 0
\(635\) −38.0607 + 21.9744i −1.51039 + 0.872026i
\(636\) 0 0
\(637\) −1.49758 3.27982i −0.0593364 0.129951i
\(638\) 0 0
\(639\) −0.736812 + 0.425399i −0.0291478 + 0.0168285i
\(640\) 0 0
\(641\) 0.953524 1.65155i 0.0376619 0.0652324i −0.846580 0.532261i \(-0.821342\pi\)
0.884242 + 0.467029i \(0.154676\pi\)
\(642\) 0 0
\(643\) 9.56862 + 5.52444i 0.377349 + 0.217863i 0.676664 0.736292i \(-0.263425\pi\)
−0.299315 + 0.954154i \(0.596758\pi\)
\(644\) 0 0
\(645\) 87.1612i 3.43197i
\(646\) 0 0
\(647\) −22.3945 38.7885i −0.880420 1.52493i −0.850875 0.525368i \(-0.823928\pi\)
−0.0295447 0.999563i \(-0.509406\pi\)
\(648\) 0 0
\(649\) 0.445651 0.0174933
\(650\) 0 0
\(651\) −22.1653 −0.868726
\(652\) 0 0
\(653\) −10.4387 18.0804i −0.408499 0.707541i 0.586223 0.810150i \(-0.300614\pi\)
−0.994722 + 0.102609i \(0.967281\pi\)
\(654\) 0 0
\(655\) 13.9310i 0.544329i
\(656\) 0 0
\(657\) −4.75919 2.74772i −0.185674 0.107199i
\(658\) 0 0
\(659\) 0.900509 1.55973i 0.0350788 0.0607583i −0.847953 0.530071i \(-0.822165\pi\)
0.883032 + 0.469313i \(0.155498\pi\)
\(660\) 0 0
\(661\) 8.46403 4.88671i 0.329213 0.190071i −0.326279 0.945274i \(-0.605795\pi\)
0.655491 + 0.755203i \(0.272462\pi\)
\(662\) 0 0
\(663\) 14.2622 + 1.36283i 0.553898 + 0.0529279i
\(664\) 0 0
\(665\) 6.33801 3.65925i 0.245777 0.141900i
\(666\) 0 0
\(667\) 4.86423 8.42509i 0.188344 0.326221i
\(668\) 0 0
\(669\) −46.9318 27.0961i −1.81449 1.04760i
\(670\) 0 0
\(671\) 19.1047i 0.737528i
\(672\) 0 0
\(673\) −8.31668 14.4049i −0.320584 0.555268i 0.660024 0.751244i \(-0.270546\pi\)
−0.980609 + 0.195976i \(0.937213\pi\)
\(674\) 0 0
\(675\) 1.92456 0.0740765
\(676\) 0 0
\(677\) 33.5232 1.28840 0.644201 0.764856i \(-0.277190\pi\)
0.644201 + 0.764856i \(0.277190\pi\)
\(678\) 0 0
\(679\) −8.73781 15.1343i −0.335326 0.580802i
\(680\) 0 0
\(681\) 38.9918i 1.49417i
\(682\) 0 0
\(683\) 20.5810 + 11.8825i 0.787511 + 0.454670i 0.839086 0.543999i \(-0.183091\pi\)
−0.0515745 + 0.998669i \(0.516424\pi\)
\(684\) 0 0
\(685\) 11.4947 19.9094i 0.439190 0.760699i
\(686\) 0 0
\(687\) 25.7318 14.8562i 0.981728 0.566801i
\(688\) 0 0
\(689\) 24.8238 + 2.37205i 0.945712 + 0.0903678i
\(690\) 0 0
\(691\) 4.55167 2.62791i 0.173154 0.0999702i −0.410918 0.911672i \(-0.634792\pi\)
0.584072 + 0.811702i \(0.301459\pi\)
\(692\) 0 0
\(693\) 5.61415 9.72399i 0.213264 0.369384i
\(694\) 0 0
\(695\) −8.44902 4.87804i −0.320489 0.185035i
\(696\) 0 0
\(697\) 15.6375i 0.592314i
\(698\) 0 0
\(699\) 9.31171 + 16.1284i 0.352201 + 0.610030i
\(700\) 0 0
\(701\) 10.3164 0.389646 0.194823 0.980838i \(-0.437587\pi\)
0.194823 + 0.980838i \(0.437587\pi\)
\(702\) 0 0
\(703\) −24.1932 −0.912463
\(704\) 0 0
\(705\) −39.5109 68.4349i −1.48807 2.57741i
\(706\) 0 0
\(707\) 10.2825i 0.386714i
\(708\) 0 0
\(709\) 16.7539 + 9.67286i 0.629205 + 0.363272i 0.780444 0.625225i \(-0.214993\pi\)
−0.151239 + 0.988497i \(0.548326\pi\)
\(710\) 0 0
\(711\) 7.44665 12.8980i 0.279271 0.483712i
\(712\) 0 0
\(713\) 19.0720 11.0112i 0.714251 0.412373i
\(714\) 0 0
\(715\) 21.0658 + 46.1357i 0.787816 + 1.72538i
\(716\) 0 0
\(717\) 20.2656 11.7003i 0.756833 0.436957i
\(718\) 0 0
\(719\) 24.0372 41.6337i 0.896437 1.55267i 0.0644212 0.997923i \(-0.479480\pi\)
0.832016 0.554752i \(-0.187187\pi\)
\(720\) 0 0
\(721\) −6.21052 3.58564i −0.231292 0.133536i
\(722\) 0 0
\(723\) 0.347644i 0.0129290i
\(724\) 0 0
\(725\) 16.5901 + 28.7349i 0.616141 + 1.06719i
\(726\) 0 0
\(727\) −11.6338 −0.431475 −0.215738 0.976451i \(-0.569216\pi\)
−0.215738 + 0.976451i \(0.569216\pi\)
\(728\) 0 0
\(729\) −25.2415 −0.934872
\(730\) 0 0
\(731\) −8.06325 13.9660i −0.298230 0.516549i
\(732\) 0 0
\(733\) 30.3258i 1.12011i −0.828456 0.560055i \(-0.810780\pi\)
0.828456 0.560055i \(-0.189220\pi\)
\(734\) 0 0
\(735\) 7.65484 + 4.41953i 0.282353 + 0.163017i
\(736\) 0 0
\(737\) 17.6295 30.5352i 0.649391 1.12478i
\(738\) 0 0
\(739\) 8.40853 4.85467i 0.309313 0.178582i −0.337306 0.941395i \(-0.609516\pi\)
0.646619 + 0.762813i \(0.276182\pi\)
\(740\) 0 0
\(741\) 1.67649 17.5447i 0.0615874 0.644521i
\(742\) 0 0
\(743\) −36.4578 + 21.0489i −1.33751 + 0.772211i −0.986437 0.164138i \(-0.947516\pi\)
−0.351071 + 0.936349i \(0.614182\pi\)
\(744\) 0 0
\(745\) −28.3224 + 49.0557i −1.03765 + 1.79726i
\(746\) 0 0
\(747\) −29.6767 17.1339i −1.08581 0.626896i
\(748\) 0 0
\(749\) 14.9827i 0.547456i
\(750\) 0 0
\(751\) −12.2855 21.2791i −0.448305 0.776486i 0.549971 0.835184i \(-0.314639\pi\)
−0.998276 + 0.0586972i \(0.981305\pi\)
\(752\) 0 0
\(753\) 24.7952 0.903587
\(754\) 0 0
\(755\) 57.3904 2.08865
\(756\) 0 0
\(757\) −18.0560 31.2739i −0.656257 1.13667i −0.981577 0.191066i \(-0.938805\pi\)
0.325320 0.945604i \(-0.394528\pi\)
\(758\) 0 0
\(759\) 22.6814i 0.823284i
\(760\) 0 0
\(761\) −13.3419 7.70294i −0.483643 0.279231i 0.238291 0.971194i \(-0.423413\pi\)
−0.721933 + 0.691963i \(0.756746\pi\)
\(762\) 0 0
\(763\) 4.41207 7.64192i 0.159727 0.276656i
\(764\) 0 0
\(765\) −14.9610 + 8.63772i −0.540915 + 0.312297i
\(766\) 0 0
\(767\) 0.338478 + 0.241063i 0.0122217 + 0.00870427i
\(768\) 0 0
\(769\) 17.6792 10.2071i 0.637529 0.368078i −0.146133 0.989265i \(-0.546683\pi\)
0.783662 + 0.621187i \(0.213349\pi\)
\(770\) 0 0
\(771\) −24.4915 + 42.4205i −0.882038 + 1.52774i
\(772\) 0 0
\(773\) 42.5514 + 24.5671i 1.53047 + 0.883616i 0.999340 + 0.0363252i \(0.0115652\pi\)
0.531129 + 0.847291i \(0.321768\pi\)
\(774\) 0 0
\(775\) 75.1103i 2.69804i
\(776\) 0 0
\(777\) −14.6099 25.3050i −0.524126 0.907813i
\(778\) 0 0
\(779\) −19.2366 −0.689222
\(780\) 0 0
\(781\) −1.13294 −0.0405398
\(782\) 0 0
\(783\) 0.470973 + 0.815750i 0.0168312 + 0.0291525i
\(784\) 0 0
\(785\) 35.1978i 1.25626i
\(786\) 0 0
\(787\) 10.6890 + 6.17132i 0.381023 + 0.219984i 0.678263 0.734819i \(-0.262733\pi\)
−0.297240 + 0.954803i \(0.596066\pi\)
\(788\) 0 0
\(789\) 34.7355 60.1637i 1.23662 2.14188i
\(790\) 0 0
\(791\) −4.75128 + 2.74315i −0.168936 + 0.0975353i
\(792\) 0 0
\(793\) −10.3342 + 14.5103i −0.366977 + 0.515275i
\(794\) 0 0
\(795\) −52.9428 + 30.5665i −1.87769 + 1.08408i
\(796\) 0 0
\(797\) −10.2517 + 17.7564i −0.363133 + 0.628964i −0.988475 0.151387i \(-0.951626\pi\)
0.625342 + 0.780351i \(0.284959\pi\)
\(798\) 0 0
\(799\) −12.6618 7.31028i −0.447942 0.258619i
\(800\) 0 0
\(801\) 7.15478i 0.252802i
\(802\) 0 0
\(803\) −3.65892 6.33744i −0.129121 0.223643i
\(804\) 0 0
\(805\) −8.78208 −0.309528
\(806\) 0 0
\(807\) −78.3498 −2.75804
\(808\) 0 0
\(809\) 3.74367 + 6.48422i 0.131620 + 0.227973i 0.924301 0.381664i \(-0.124649\pi\)
−0.792681 + 0.609637i \(0.791315\pi\)
\(810\) 0 0
\(811\) 22.8692i 0.803048i 0.915849 + 0.401524i \(0.131519\pi\)
−0.915849 + 0.401524i \(0.868481\pi\)
\(812\) 0 0
\(813\) 50.8543 + 29.3608i 1.78354 + 1.02973i
\(814\) 0 0
\(815\) 23.3359 40.4190i 0.817422 1.41582i
\(816\) 0 0
\(817\) −17.1803 + 9.91904i −0.601062 + 0.347023i
\(818\) 0 0
\(819\) 9.52395 4.34868i 0.332794 0.151955i
\(820\) 0 0
\(821\) −35.0568 + 20.2400i −1.22349 + 0.706382i −0.965660 0.259808i \(-0.916341\pi\)
−0.257830 + 0.966190i \(0.583007\pi\)
\(822\) 0 0
\(823\) 11.3481 19.6555i 0.395570 0.685146i −0.597604 0.801791i \(-0.703881\pi\)
0.993174 + 0.116645i \(0.0372139\pi\)
\(824\) 0 0
\(825\) −66.9940 38.6790i −2.33243 1.34663i
\(826\) 0 0
\(827\) 15.7414i 0.547383i −0.961818 0.273691i \(-0.911755\pi\)
0.961818 0.273691i \(-0.0882447\pi\)
\(828\) 0 0
\(829\) 9.84390 + 17.0501i 0.341893 + 0.592176i 0.984784 0.173782i \(-0.0555987\pi\)
−0.642891 + 0.765957i \(0.722265\pi\)
\(830\) 0 0
\(831\) 49.0149 1.70031
\(832\) 0 0
\(833\) 1.63539 0.0566630
\(834\) 0 0
\(835\) 18.9392 + 32.8036i 0.655417 + 1.13522i
\(836\) 0 0
\(837\) 2.13229i 0.0737029i
\(838\) 0 0
\(839\) 1.90889 + 1.10210i 0.0659023 + 0.0380487i 0.532589 0.846374i \(-0.321219\pi\)
−0.466687 + 0.884423i \(0.654552\pi\)
\(840\) 0 0
\(841\) 6.38024 11.0509i 0.220008 0.381066i
\(842\) 0 0
\(843\) −50.5174 + 29.1663i −1.73991 + 1.00454i
\(844\) 0 0
\(845\) −8.95613 + 46.4357i −0.308100 + 1.59744i
\(846\) 0 0
\(847\) 3.42239 1.97592i 0.117595 0.0678933i
\(848\) 0 0
\(849\) −16.4661 + 28.5202i −0.565116 + 0.978810i
\(850\) 0 0
\(851\) 25.1419 + 14.5157i 0.861854 + 0.497592i
\(852\) 0 0
\(853\) 2.60526i 0.0892026i 0.999005 + 0.0446013i \(0.0142017\pi\)
−0.999005 + 0.0446013i \(0.985798\pi\)
\(854\) 0 0
\(855\) 10.6257 + 18.4043i 0.363392 + 0.629414i
\(856\) 0 0
\(857\) −33.0023 −1.12734 −0.563668 0.826001i \(-0.690610\pi\)
−0.563668 + 0.826001i \(0.690610\pi\)
\(858\) 0 0
\(859\) −17.0404 −0.581411 −0.290706 0.956813i \(-0.593890\pi\)
−0.290706 + 0.956813i \(0.593890\pi\)
\(860\) 0 0
\(861\) −11.6167 20.1207i −0.395895 0.685710i
\(862\) 0 0
\(863\) 1.85114i 0.0630134i −0.999504 0.0315067i \(-0.989969\pi\)
0.999504 0.0315067i \(-0.0100306\pi\)
\(864\) 0 0
\(865\) 38.3654 + 22.1503i 1.30446 + 0.753132i
\(866\) 0 0
\(867\) 17.4038 30.1443i 0.591066 1.02376i
\(868\) 0 0
\(869\) 17.1752 9.91611i 0.582629 0.336381i
\(870\) 0 0
\(871\) 29.9070 13.6557i 1.01336 0.462705i
\(872\) 0 0
\(873\) 43.9471 25.3728i 1.48738 0.858741i
\(874\) 0 0
\(875\) 5.88170 10.1874i 0.198838 0.344397i
\(876\) 0 0
\(877\) 9.69212 + 5.59575i 0.327280 + 0.188955i 0.654633 0.755947i \(-0.272823\pi\)
−0.327353 + 0.944902i \(0.606157\pi\)
\(878\) 0 0
\(879\) 34.6824i 1.16981i
\(880\) 0 0
\(881\) 9.39753 + 16.2770i 0.316611 + 0.548386i 0.979779 0.200085i \(-0.0641217\pi\)
−0.663168 + 0.748471i \(0.730788\pi\)
\(882\) 0 0
\(883\) 7.53316 0.253511 0.126756 0.991934i \(-0.459544\pi\)
0.126756 + 0.991934i \(0.459544\pi\)
\(884\) 0 0
\(885\) −1.01872 −0.0342437
\(886\) 0 0
\(887\) 13.8730 + 24.0288i 0.465811 + 0.806809i 0.999238 0.0390377i \(-0.0124292\pi\)
−0.533426 + 0.845846i \(0.679096\pi\)
\(888\) 0 0
\(889\) 12.0811i 0.405187i
\(890\) 0 0
\(891\) −31.0739 17.9405i −1.04101 0.601029i
\(892\) 0 0
\(893\) −8.99278 + 15.5759i −0.300932 + 0.521229i
\(894\) 0 0
\(895\) 1.47446 0.851280i 0.0492858 0.0284552i
\(896\) 0 0
\(897\) −12.2689 + 17.2269i −0.409647 + 0.575188i
\(898\) 0 0
\(899\) −31.8364 + 18.3808i −1.06180 + 0.613033i
\(900\) 0 0
\(901\) −5.65540 + 9.79544i −0.188409 + 0.326333i
\(902\) 0 0
\(903\) −20.7498 11.9799i −0.690510 0.398666i
\(904\) 0 0
\(905\) 74.2514i 2.46820i
\(906\) 0 0
\(907\) −6.33612 10.9745i −0.210388 0.364402i 0.741448 0.671010i \(-0.234139\pi\)
−0.951836 + 0.306608i \(0.900806\pi\)
\(908\) 0 0
\(909\) 29.8584 0.990341
\(910\) 0 0
\(911\) −53.8605 −1.78448 −0.892239 0.451564i \(-0.850866\pi\)
−0.892239 + 0.451564i \(0.850866\pi\)
\(912\) 0 0
\(913\) −22.8158 39.5181i −0.755093 1.30786i
\(914\) 0 0
\(915\) 43.6715i 1.44374i
\(916\) 0 0
\(917\) −3.31645 1.91475i −0.109519 0.0632307i
\(918\) 0 0
\(919\) 14.8048 25.6427i 0.488365 0.845873i −0.511545 0.859256i \(-0.670927\pi\)
0.999910 + 0.0133831i \(0.00426010\pi\)
\(920\) 0 0
\(921\) −59.5046 + 34.3550i −1.96074 + 1.13204i
\(922\) 0 0
\(923\) −0.860483 0.612833i −0.0283231 0.0201716i
\(924\) 0 0
\(925\) −85.7499 + 49.5077i −2.81944 + 1.62780i
\(926\) 0 0
\(927\) 10.4120 18.0341i 0.341975 0.592317i
\(928\) 0 0
\(929\) 40.2741 + 23.2522i 1.32135 + 0.762881i 0.983944 0.178478i \(-0.0571173\pi\)
0.337406 + 0.941359i \(0.390451\pi\)
\(930\) 0 0
\(931\) 2.01179i 0.0659337i
\(932\) 0 0
\(933\) 8.34364 + 14.4516i 0.273158 + 0.473124i
\(934\) 0 0
\(935\) −23.0043 −0.752322
\(936\) 0 0
\(937\) 25.7685 0.841821 0.420911 0.907102i \(-0.361711\pi\)
0.420911 + 0.907102i \(0.361711\pi\)
\(938\) 0 0
\(939\) 24.1126 + 41.7643i 0.786885 + 1.36293i
\(940\) 0 0
\(941\) 51.0205i 1.66322i −0.555360 0.831610i \(-0.687420\pi\)
0.555360 0.831610i \(-0.312580\pi\)
\(942\) 0 0
\(943\) 19.9910 + 11.5418i 0.650995 + 0.375852i
\(944\) 0 0
\(945\) 0.425157 0.736394i 0.0138304 0.0239549i
\(946\) 0 0
\(947\) −8.23345 + 4.75358i −0.267551 + 0.154471i −0.627774 0.778395i \(-0.716034\pi\)
0.360223 + 0.932866i \(0.382701\pi\)
\(948\) 0 0
\(949\) 0.649066 6.79257i 0.0210696 0.220496i
\(950\) 0 0
\(951\) −69.8036 + 40.3011i −2.26354 + 1.30685i
\(952\) 0 0
\(953\) −6.94507 + 12.0292i −0.224973 + 0.389665i −0.956311 0.292350i \(-0.905563\pi\)
0.731338 + 0.682015i \(0.238896\pi\)
\(954\) 0 0
\(955\) −10.9920 6.34626i −0.355694 0.205360i
\(956\) 0 0
\(957\) 37.8616i 1.22389i
\(958\) 0 0
\(959\) −3.15979 5.47291i −0.102035 0.176729i
\(960\) 0 0
\(961\) −52.2175 −1.68444
\(962\) 0 0
\(963\) −43.5068 −1.40199
\(964\) 0 0
\(965\) 6.26657 + 10.8540i 0.201728 + 0.349403i
\(966\) 0 0
\(967\) 30.4473i 0.979120i −0.871970 0.489560i \(-0.837157\pi\)
0.871970 0.489560i \(-0.162843\pi\)
\(968\) 0 0
\(969\) 6.92311 + 3.99706i 0.222402 + 0.128404i
\(970\) 0 0
\(971\) 6.88995 11.9337i 0.221109 0.382972i −0.734036 0.679110i \(-0.762366\pi\)
0.955145 + 0.296139i \(0.0956990\pi\)
\(972\) 0 0
\(973\) −2.32256 + 1.34093i −0.0744577 + 0.0429882i
\(974\) 0 0
\(975\) −29.9605 65.6158i −0.959504 2.10139i
\(976\) 0 0
\(977\) −1.24120 + 0.716604i −0.0397094 + 0.0229262i −0.519723 0.854335i \(-0.673965\pi\)
0.480014 + 0.877261i \(0.340632\pi\)
\(978\) 0 0
\(979\) −4.76373 + 8.25102i −0.152249 + 0.263704i
\(980\) 0 0
\(981\) 22.1906 + 12.8118i 0.708492 + 0.409048i
\(982\) 0 0
\(983\) 31.6454i 1.00933i −0.863315 0.504665i \(-0.831616\pi\)
0.863315 0.504665i \(-0.168384\pi\)
\(984\) 0 0
\(985\) −22.9599 39.7677i −0.731564 1.26711i
\(986\) 0 0
\(987\) −21.7224 −0.691431
\(988\) 0 0
\(989\) 23.8054 0.756967
\(990\) 0 0
\(991\) −2.74528 4.75496i −0.0872066 0.151046i 0.819123 0.573618i \(-0.194461\pi\)
−0.906329 + 0.422572i \(0.861127\pi\)
\(992\) 0 0
\(993\) 40.4905i 1.28493i
\(994\) 0 0
\(995\) 34.8019 + 20.0929i 1.10329 + 0.636987i
\(996\) 0 0
\(997\) −12.2202 + 21.1659i −0.387016 + 0.670332i −0.992047 0.125871i \(-0.959828\pi\)
0.605030 + 0.796202i \(0.293161\pi\)
\(998\) 0 0
\(999\) −2.43434 + 1.40547i −0.0770191 + 0.0444670i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.cc.f.673.2 16
4.3 odd 2 364.2.u.a.309.7 yes 16
12.11 even 2 3276.2.cf.c.1765.1 16
13.4 even 6 inner 1456.2.cc.f.225.2 16
28.3 even 6 2548.2.bb.c.569.2 16
28.11 odd 6 2548.2.bb.d.569.7 16
28.19 even 6 2548.2.bq.c.361.7 16
28.23 odd 6 2548.2.bq.e.361.2 16
28.27 even 2 2548.2.u.c.1765.2 16
52.3 odd 6 4732.2.g.k.337.4 16
52.11 even 12 4732.2.a.t.1.2 8
52.15 even 12 4732.2.a.s.1.2 8
52.23 odd 6 4732.2.g.k.337.3 16
52.43 odd 6 364.2.u.a.225.7 16
156.95 even 6 3276.2.cf.c.2773.8 16
364.95 odd 6 2548.2.bq.e.1941.2 16
364.199 even 6 2548.2.bq.c.1941.7 16
364.251 even 6 2548.2.u.c.589.2 16
364.303 odd 6 2548.2.bb.d.1733.7 16
364.355 even 6 2548.2.bb.c.1733.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.7 16 52.43 odd 6
364.2.u.a.309.7 yes 16 4.3 odd 2
1456.2.cc.f.225.2 16 13.4 even 6 inner
1456.2.cc.f.673.2 16 1.1 even 1 trivial
2548.2.u.c.589.2 16 364.251 even 6
2548.2.u.c.1765.2 16 28.27 even 2
2548.2.bb.c.569.2 16 28.3 even 6
2548.2.bb.c.1733.2 16 364.355 even 6
2548.2.bb.d.569.7 16 28.11 odd 6
2548.2.bb.d.1733.7 16 364.303 odd 6
2548.2.bq.c.361.7 16 28.19 even 6
2548.2.bq.c.1941.7 16 364.199 even 6
2548.2.bq.e.361.2 16 28.23 odd 6
2548.2.bq.e.1941.2 16 364.95 odd 6
3276.2.cf.c.1765.1 16 12.11 even 2
3276.2.cf.c.2773.8 16 156.95 even 6
4732.2.a.s.1.2 8 52.15 even 12
4732.2.a.t.1.2 8 52.11 even 12
4732.2.g.k.337.3 16 52.23 odd 6
4732.2.g.k.337.4 16 52.3 odd 6