Properties

Label 2-4732-1.1-c1-0-15
Degree $2$
Conductor $4732$
Sign $-1$
Analytic cond. $37.7852$
Root an. cond. $6.14696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.25·3-s − 4.27·5-s − 7-s + 2.08·9-s − 5.44·11-s + 9.64·15-s − 6.61·17-s + 2.49·19-s + 2.25·21-s + 5.96·23-s + 13.2·25-s + 2.05·27-s − 0.282·29-s + 1.74·31-s + 12.2·33-s + 4.27·35-s + 3.60·37-s − 3.74·41-s + 3.43·43-s − 8.93·45-s − 1.20·47-s + 49-s + 14.9·51-s + 8.16·53-s + 23.2·55-s − 5.63·57-s − 3.16·59-s + ⋯
L(s)  = 1  − 1.30·3-s − 1.91·5-s − 0.377·7-s + 0.696·9-s − 1.64·11-s + 2.49·15-s − 1.60·17-s + 0.573·19-s + 0.492·21-s + 1.24·23-s + 2.65·25-s + 0.395·27-s − 0.0524·29-s + 0.313·31-s + 2.13·33-s + 0.722·35-s + 0.592·37-s − 0.585·41-s + 0.523·43-s − 1.33·45-s − 0.175·47-s + 0.142·49-s + 2.09·51-s + 1.12·53-s + 3.13·55-s − 0.746·57-s − 0.411·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4732\)    =    \(2^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(37.7852\)
Root analytic conductor: \(6.14696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4732,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + 2.25T + 3T^{2} \)
5 \( 1 + 4.27T + 5T^{2} \)
11 \( 1 + 5.44T + 11T^{2} \)
17 \( 1 + 6.61T + 17T^{2} \)
19 \( 1 - 2.49T + 19T^{2} \)
23 \( 1 - 5.96T + 23T^{2} \)
29 \( 1 + 0.282T + 29T^{2} \)
31 \( 1 - 1.74T + 31T^{2} \)
37 \( 1 - 3.60T + 37T^{2} \)
41 \( 1 + 3.74T + 41T^{2} \)
43 \( 1 - 3.43T + 43T^{2} \)
47 \( 1 + 1.20T + 47T^{2} \)
53 \( 1 - 8.16T + 53T^{2} \)
59 \( 1 + 3.16T + 59T^{2} \)
61 \( 1 + 4.96T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 5.57T + 71T^{2} \)
73 \( 1 - 4.66T + 73T^{2} \)
79 \( 1 - 9.40T + 79T^{2} \)
83 \( 1 - 0.00717T + 83T^{2} \)
89 \( 1 - 17.1T + 89T^{2} \)
97 \( 1 + 3.20T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77993467617956224259490231513, −7.17881114518498019854424860058, −6.61118831043964808513638033182, −5.65273112527185756122398564369, −4.80444443850808483107478611469, −4.51737423823296718291984516352, −3.37818971916665580215450447009, −2.63162730664729171674134737660, −0.73414796206686743725963938960, 0, 0.73414796206686743725963938960, 2.63162730664729171674134737660, 3.37818971916665580215450447009, 4.51737423823296718291984516352, 4.80444443850808483107478611469, 5.65273112527185756122398564369, 6.61118831043964808513638033182, 7.17881114518498019854424860058, 7.77993467617956224259490231513

Graph of the $Z$-function along the critical line