L(s) = 1 | − 2.25·3-s − 4.27·5-s − 7-s + 2.08·9-s − 5.44·11-s + 9.64·15-s − 6.61·17-s + 2.49·19-s + 2.25·21-s + 5.96·23-s + 13.2·25-s + 2.05·27-s − 0.282·29-s + 1.74·31-s + 12.2·33-s + 4.27·35-s + 3.60·37-s − 3.74·41-s + 3.43·43-s − 8.93·45-s − 1.20·47-s + 49-s + 14.9·51-s + 8.16·53-s + 23.2·55-s − 5.63·57-s − 3.16·59-s + ⋯ |
L(s) = 1 | − 1.30·3-s − 1.91·5-s − 0.377·7-s + 0.696·9-s − 1.64·11-s + 2.49·15-s − 1.60·17-s + 0.573·19-s + 0.492·21-s + 1.24·23-s + 2.65·25-s + 0.395·27-s − 0.0524·29-s + 0.313·31-s + 2.13·33-s + 0.722·35-s + 0.592·37-s − 0.585·41-s + 0.523·43-s − 1.33·45-s − 0.175·47-s + 0.142·49-s + 2.09·51-s + 1.12·53-s + 3.13·55-s − 0.746·57-s − 0.411·59-s + ⋯ |
Λ(s)=(=(4732s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4732s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 13 | 1 |
good | 3 | 1+2.25T+3T2 |
| 5 | 1+4.27T+5T2 |
| 11 | 1+5.44T+11T2 |
| 17 | 1+6.61T+17T2 |
| 19 | 1−2.49T+19T2 |
| 23 | 1−5.96T+23T2 |
| 29 | 1+0.282T+29T2 |
| 31 | 1−1.74T+31T2 |
| 37 | 1−3.60T+37T2 |
| 41 | 1+3.74T+41T2 |
| 43 | 1−3.43T+43T2 |
| 47 | 1+1.20T+47T2 |
| 53 | 1−8.16T+53T2 |
| 59 | 1+3.16T+59T2 |
| 61 | 1+4.96T+61T2 |
| 67 | 1+10.9T+67T2 |
| 71 | 1+5.57T+71T2 |
| 73 | 1−4.66T+73T2 |
| 79 | 1−9.40T+79T2 |
| 83 | 1−0.00717T+83T2 |
| 89 | 1−17.1T+89T2 |
| 97 | 1+3.20T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77993467617956224259490231513, −7.17881114518498019854424860058, −6.61118831043964808513638033182, −5.65273112527185756122398564369, −4.80444443850808483107478611469, −4.51737423823296718291984516352, −3.37818971916665580215450447009, −2.63162730664729171674134737660, −0.73414796206686743725963938960, 0,
0.73414796206686743725963938960, 2.63162730664729171674134737660, 3.37818971916665580215450447009, 4.51737423823296718291984516352, 4.80444443850808483107478611469, 5.65273112527185756122398564369, 6.61118831043964808513638033182, 7.17881114518498019854424860058, 7.77993467617956224259490231513