Properties

Label 2-3276-13.12-c1-0-31
Degree $2$
Conductor $3276$
Sign $-0.929 + 0.368i$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.32i·5-s i·7-s − 0.908i·11-s + (−1.32 − 3.35i)13-s − 1.93·17-s + 4.19i·19-s + 1.41·23-s − 0.419·25-s + 7.75·29-s − 3.87i·31-s − 2.32·35-s − 11.9i·37-s − 6.19i·41-s − 6.91·43-s + 3.16i·47-s + ⋯
L(s)  = 1  − 1.04i·5-s − 0.377i·7-s − 0.273i·11-s + (−0.368 − 0.929i)13-s − 0.468·17-s + 0.961i·19-s + 0.295·23-s − 0.0838·25-s + 1.44·29-s − 0.695i·31-s − 0.393·35-s − 1.97i·37-s − 0.968i·41-s − 1.05·43-s + 0.462i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-0.929 + 0.368i$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3276} (2521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ -0.929 + 0.368i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.120537200\)
\(L(\frac12)\) \(\approx\) \(1.120537200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + iT \)
13 \( 1 + (1.32 + 3.35i)T \)
good5 \( 1 + 2.32iT - 5T^{2} \)
11 \( 1 + 0.908iT - 11T^{2} \)
17 \( 1 + 1.93T + 17T^{2} \)
19 \( 1 - 4.19iT - 19T^{2} \)
23 \( 1 - 1.41T + 23T^{2} \)
29 \( 1 - 7.75T + 29T^{2} \)
31 \( 1 + 3.87iT - 31T^{2} \)
37 \( 1 + 11.9iT - 37T^{2} \)
41 \( 1 + 6.19iT - 41T^{2} \)
43 \( 1 + 6.91T + 43T^{2} \)
47 \( 1 - 3.16iT - 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 - 4.97iT - 59T^{2} \)
61 \( 1 + 0.0483T + 61T^{2} \)
67 \( 1 + 3.76iT - 67T^{2} \)
71 \( 1 + 15.3iT - 71T^{2} \)
73 \( 1 - 7.16iT - 73T^{2} \)
79 \( 1 + 17.3T + 79T^{2} \)
83 \( 1 - 12.1iT - 83T^{2} \)
89 \( 1 - 11.7iT - 89T^{2} \)
97 \( 1 - 6.37iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.264029854260073140592375652281, −7.77368964572353663476173763135, −6.84762157409560247997729733270, −5.92111355338624973191352996807, −5.23550705277991893029180770264, −4.49490076306865935026856107007, −3.67063405331076510340095833844, −2.60973049736296790119946064418, −1.37637974374407496676731427861, −0.34562550069372353586130543541, 1.54774990506521917859998408974, 2.69180527314960563627560834455, 3.15595059815724933436593019100, 4.53520419526360059397432771017, 4.93755364249070895421740923103, 6.29549377461321243007543112424, 6.70642456043420696992974056442, 7.24140458977580950617048636838, 8.348651266755775118996114309817, 8.868890778665855734657795536641

Graph of the $Z$-function along the critical line