L(s) = 1 | − 2.32i·5-s − i·7-s − 0.908i·11-s + (−1.32 − 3.35i)13-s − 1.93·17-s + 4.19i·19-s + 1.41·23-s − 0.419·25-s + 7.75·29-s − 3.87i·31-s − 2.32·35-s − 11.9i·37-s − 6.19i·41-s − 6.91·43-s + 3.16i·47-s + ⋯ |
L(s) = 1 | − 1.04i·5-s − 0.377i·7-s − 0.273i·11-s + (−0.368 − 0.929i)13-s − 0.468·17-s + 0.961i·19-s + 0.295·23-s − 0.0838·25-s + 1.44·29-s − 0.695i·31-s − 0.393·35-s − 1.97i·37-s − 0.968i·41-s − 1.05·43-s + 0.462i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(−0.929+0.368i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(−0.929+0.368i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
−0.929+0.368i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(2521,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), −0.929+0.368i)
|
Particular Values
L(1) |
≈ |
1.120537200 |
L(21) |
≈ |
1.120537200 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+iT |
| 13 | 1+(1.32+3.35i)T |
good | 5 | 1+2.32iT−5T2 |
| 11 | 1+0.908iT−11T2 |
| 17 | 1+1.93T+17T2 |
| 19 | 1−4.19iT−19T2 |
| 23 | 1−1.41T+23T2 |
| 29 | 1−7.75T+29T2 |
| 31 | 1+3.87iT−31T2 |
| 37 | 1+11.9iT−37T2 |
| 41 | 1+6.19iT−41T2 |
| 43 | 1+6.91T+43T2 |
| 47 | 1−3.16iT−47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1−4.97iT−59T2 |
| 61 | 1+0.0483T+61T2 |
| 67 | 1+3.76iT−67T2 |
| 71 | 1+15.3iT−71T2 |
| 73 | 1−7.16iT−73T2 |
| 79 | 1+17.3T+79T2 |
| 83 | 1−12.1iT−83T2 |
| 89 | 1−11.7iT−89T2 |
| 97 | 1−6.37iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.264029854260073140592375652281, −7.77368964572353663476173763135, −6.84762157409560247997729733270, −5.92111355338624973191352996807, −5.23550705277991893029180770264, −4.49490076306865935026856107007, −3.67063405331076510340095833844, −2.60973049736296790119946064418, −1.37637974374407496676731427861, −0.34562550069372353586130543541,
1.54774990506521917859998408974, 2.69180527314960563627560834455, 3.15595059815724933436593019100, 4.53520419526360059397432771017, 4.93755364249070895421740923103, 6.29549377461321243007543112424, 6.70642456043420696992974056442, 7.24140458977580950617048636838, 8.348651266755775118996114309817, 8.868890778665855734657795536641