Properties

Label 3276.2.e.f
Level $3276$
Weight $2$
Character orbit 3276.e
Analytic conductor $26.159$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(2521,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.2521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.41589892096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 16x^{6} + 80x^{4} + 132x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_{3}) q^{5} + \beta_{3} q^{7} + (\beta_{6} + \beta_{4} + \beta_1) q^{11} + (\beta_{7} + \beta_{6} + \beta_{3}) q^{13} + (2 \beta_{5} + \beta_{2}) q^{17} + (\beta_{6} - \beta_{3} + 2 \beta_1) q^{19}+ \cdots + (3 \beta_{6} + 2 \beta_{4} + \cdots + 4 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{13} - 4 q^{17} + 6 q^{23} + 2 q^{25} + 2 q^{29} - 6 q^{35} - 6 q^{43} - 8 q^{49} - 22 q^{53} - 20 q^{55} + 8 q^{61} + 6 q^{65} - 26 q^{79} - 10 q^{91} + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 16x^{6} + 80x^{4} + 132x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 8\nu^{2} + 8 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - 16\nu^{5} - 72\nu^{3} - 68\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} + 16\nu^{5} + 80\nu^{3} + 116\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} - 14\nu^{4} - 52\nu^{2} - 36 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{7} + 40\nu^{5} + 144\nu^{3} + 92\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} + 14\nu^{4} + 56\nu^{2} + 52 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + \beta_{5} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} + 2\beta_{3} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{7} - 8\beta_{5} + 2\beta_{2} + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -2\beta_{6} - 18\beta_{4} - 24\beta_{3} + 40\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 60\beta_{7} + 56\beta_{5} - 28\beta_{2} - 164 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 32\beta_{6} + 144\beta_{4} + 224\beta_{3} - 276\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2521.1
1.29363i
0.927719i
2.77129i
2.40538i
2.40538i
2.77129i
0.927719i
1.29363i
0 0 0 2.79846i 0 1.00000i 0 0 0
2521.2 0 0 0 2.38393i 0 1.00000i 0 0 0
2521.3 0 0 0 2.32791i 0 1.00000i 0 0 0
2521.4 0 0 0 0.257562i 0 1.00000i 0 0 0
2521.5 0 0 0 0.257562i 0 1.00000i 0 0 0
2521.6 0 0 0 2.32791i 0 1.00000i 0 0 0
2521.7 0 0 0 2.38393i 0 1.00000i 0 0 0
2521.8 0 0 0 2.79846i 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2521.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.e.f 8
3.b odd 2 1 364.2.g.a 8
12.b even 2 1 1456.2.k.d 8
13.b even 2 1 inner 3276.2.e.f 8
21.c even 2 1 2548.2.g.g 8
21.g even 6 2 2548.2.y.e 16
21.h odd 6 2 2548.2.y.f 16
39.d odd 2 1 364.2.g.a 8
39.f even 4 1 4732.2.a.o 4
39.f even 4 1 4732.2.a.p 4
156.h even 2 1 1456.2.k.d 8
273.g even 2 1 2548.2.g.g 8
273.w odd 6 2 2548.2.y.f 16
273.ba even 6 2 2548.2.y.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.g.a 8 3.b odd 2 1
364.2.g.a 8 39.d odd 2 1
1456.2.k.d 8 12.b even 2 1
1456.2.k.d 8 156.h even 2 1
2548.2.g.g 8 21.c even 2 1
2548.2.g.g 8 273.g even 2 1
2548.2.y.e 16 21.g even 6 2
2548.2.y.e 16 273.ba even 6 2
2548.2.y.f 16 21.h odd 6 2
2548.2.y.f 16 273.w odd 6 2
3276.2.e.f 8 1.a even 1 1 trivial
3276.2.e.f 8 13.b even 2 1 inner
4732.2.a.o 4 39.f even 4 1
4732.2.a.p 4 39.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 19T_{5}^{6} + 119T_{5}^{4} + 249T_{5}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(3276, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 19 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{8} + 36 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$13$ \( T^{8} - 2 T^{7} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( (T^{4} + 2 T^{3} - 52 T^{2} + \cdots + 44)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 71 T^{6} + \cdots + 30976 \) Copy content Toggle raw display
$23$ \( (T^{4} - 3 T^{3} - 13 T^{2} + \cdots - 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - T^{3} - 83 T^{2} + \cdots + 1182)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 123 T^{6} + \cdots + 322624 \) Copy content Toggle raw display
$37$ \( T^{8} + 212 T^{6} + \cdots + 20736 \) Copy content Toggle raw display
$41$ \( T^{8} + 156 T^{6} + \cdots + 123904 \) Copy content Toggle raw display
$43$ \( (T^{4} + 3 T^{3} + \cdots + 232)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 239 T^{6} + \cdots + 4032064 \) Copy content Toggle raw display
$53$ \( (T^{4} + 11 T^{3} + \cdots - 54)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 180 T^{6} + \cdots + 147456 \) Copy content Toggle raw display
$61$ \( (T^{4} - 4 T^{3} - 112 T^{2} + \cdots - 16)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 368 T^{6} + \cdots + 11943936 \) Copy content Toggle raw display
$71$ \( T^{8} + 408 T^{6} + \cdots + 2214144 \) Copy content Toggle raw display
$73$ \( T^{8} + 279 T^{6} + \cdots + 2421136 \) Copy content Toggle raw display
$79$ \( (T^{4} + 13 T^{3} + \cdots - 36)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 547 T^{6} + \cdots + 75481344 \) Copy content Toggle raw display
$89$ \( T^{8} + 439 T^{6} + \cdots + 57335184 \) Copy content Toggle raw display
$97$ \( T^{8} + 447 T^{6} + \cdots + 75134224 \) Copy content Toggle raw display
show more
show less