L(s) = 1 | + 2·13-s − 4·17-s + 6·23-s + 21·25-s + 2·29-s − 6·43-s − 4·49-s − 22·53-s + 8·61-s − 26·79-s − 28·101-s − 32·107-s − 50·113-s + 52·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 16·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 0.554·13-s − 0.970·17-s + 1.25·23-s + 21/5·25-s + 0.371·29-s − 0.914·43-s − 4/7·49-s − 3.02·53-s + 1.02·61-s − 2.92·79-s − 2.78·101-s − 3.09·107-s − 4.70·113-s + 4.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=((216⋅316⋅78⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((216⋅316⋅78⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.301236731 |
L(21) |
≈ |
2.301236731 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | (1+T2)4 |
| 13 | 1−2T+20T2−94T3+278T4−94pT5+20p2T6−2p3T7+p4T8 |
good | 5 | 1−21T2+249T4−2006T6+11626T8−2006p2T10+249p4T12−21p6T14+p8T16 |
| 11 | 1−52T2+1368T4−24280T6+312502T8−24280p2T10+1368p4T12−52p6T14+p8T16 |
| 17 | (1+2T+16T2+24T3+10T4+24pT5+16p2T6+2p3T7+p4T8)2 |
| 19 | 1−81T2+3529T4−102890T6+2243374T8−102890p2T10+3529p4T12−81p6T14+p8T16 |
| 23 | (1−3T+79T2−160T3+2540T4−160pT5+79p2T6−3p3T7+p4T8)2 |
| 29 | (1−T+33T2−2T3+1414T4−2pT5+33p2T6−p3T7+p4T8)2 |
| 31 | 1−125T2+8493T4−384510T6+13439406T8−384510p2T10+8493p4T12−125p6T14+p8T16 |
| 37 | 1−84T2+2216T4+61384T6−5827706T8+61384p2T10+2216p4T12−84p6T14+p8T16 |
| 41 | 1−172T2+16612T4−1090964T6+51790710T8−1090964p2T10+16612p4T12−172p6T14+p8T16 |
| 43 | (1+3T+87T2+20T3+4016T4+20pT5+87p2T6+3p3T7+p4T8)2 |
| 47 | 1−137T2+13681T4−938098T6+50458758T8−938098p2T10+13681p4T12−137p6T14+p8T16 |
| 53 | (1+11T+209T2+1686T3+16482T4+1686pT5+209p2T6+11p3T7+p4T8)2 |
| 59 | 1−292T2+39492T4−3405100T6+222712566T8−3405100p2T10+39492p4T12−292p6T14+p8T16 |
| 61 | (1−4T+132T2−1068T3+8646T4−1068pT5+132p2T6−4p3T7+p4T8)2 |
| 67 | 1−168T2+18332T4−1592024T6+121444582T8−1592024p2T10+18332p4T12−168p6T14+p8T16 |
| 71 | 1−160T2+10920T4−867532T6+79016406T8−867532p2T10+10920p4T12−160p6T14+p8T16 |
| 73 | 1−305T2+45549T4−4497786T6+354140538T8−4497786p2T10+45549p4T12−305p6T14+p8T16 |
| 79 | (1+13T+219T2+2704T3+22084T4+2704pT5+219p2T6+13p3T7+p4T8)2 |
| 83 | 1−117T2+15309T4−1167406T6+97224854T8−1167406p2T10+15309p4T12−117p6T14+p8T16 |
| 89 | 1−273T2+54405T4−7250626T6+745491194T8−7250626p2T10+54405p4T12−273p6T14+p8T16 |
| 97 | 1−329T2+69397T4−9804594T6+1094792986T8−9804594p2T10+69397p4T12−329p6T14+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.67063405331076510340095833844, −3.39508543152180396243458827032, −3.32089168728891205471997290263, −3.15595059815724933436593019100, −3.04290282253881187147083052461, −2.98453566555373910082216441658, −2.77398016703014255493118419931, −2.72928974954659336799779295943, −2.69180527314960563627560834455, −2.60973049736296790119946064418, −2.47842425404481916264562900416, −2.40342699490560689873850161496, −2.20056182311185154659689413356, −1.91519043399298284939048364015, −1.67770148007758647227028006340, −1.54774990506521917859998408974, −1.53583311093972841324108008246, −1.37637974374407496676731427861, −1.33447250392610322844320176183, −1.28610722456293395051990019899, −0.885989048193185327027851672189, −0.860040924826318634128989553093, −0.52578354477728068428559483920, −0.34562550069372353586130543541, −0.12690236858152335507266055452,
0.12690236858152335507266055452, 0.34562550069372353586130543541, 0.52578354477728068428559483920, 0.860040924826318634128989553093, 0.885989048193185327027851672189, 1.28610722456293395051990019899, 1.33447250392610322844320176183, 1.37637974374407496676731427861, 1.53583311093972841324108008246, 1.54774990506521917859998408974, 1.67770148007758647227028006340, 1.91519043399298284939048364015, 2.20056182311185154659689413356, 2.40342699490560689873850161496, 2.47842425404481916264562900416, 2.60973049736296790119946064418, 2.69180527314960563627560834455, 2.72928974954659336799779295943, 2.77398016703014255493118419931, 2.98453566555373910082216441658, 3.04290282253881187147083052461, 3.15595059815724933436593019100, 3.32089168728891205471997290263, 3.39508543152180396243458827032, 3.67063405331076510340095833844
Plot not available for L-functions of degree greater than 10.