Properties

Label 3276.2.e.f.2521.1
Level 32763276
Weight 22
Character 3276.2521
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(2521,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.2521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.41589892096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+16x6+80x4+132x2+64 x^{8} + 16x^{6} + 80x^{4} + 132x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2521.1
Root 1.29363i-1.29363i of defining polynomial
Character χ\chi == 3276.2521
Dual form 3276.2.e.f.2521.8

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.79846iq51.00000iq7+1.03291iq11+(1.79846+3.12499i)q13+6.95635q17+2.53774iq19+3.83136q232.83136q25+5.10175q29+3.78880iq312.79846q35+6.20741iq37+0.990338iq41+0.560979q437.19080iq471.00000q491.17830q53+2.89054q55+11.9234iq59+13.8469q61+(8.74515+5.03291i)q6513.7811iq67+3.80432iq713.19080iq73+1.03291q77+7.33240q7916.6260iq8319.4670iq8511.8964iq89+(3.12499+1.79846i)q91+7.10175q95+8.60355iq97+O(q100)q-2.79846i q^{5} -1.00000i q^{7} +1.03291i q^{11} +(-1.79846 + 3.12499i) q^{13} +6.95635 q^{17} +2.53774i q^{19} +3.83136 q^{23} -2.83136 q^{25} +5.10175 q^{29} +3.78880i q^{31} -2.79846 q^{35} +6.20741i q^{37} +0.990338i q^{41} +0.560979 q^{43} -7.19080i q^{47} -1.00000 q^{49} -1.17830 q^{53} +2.89054 q^{55} +11.9234i q^{59} +13.8469 q^{61} +(8.74515 + 5.03291i) q^{65} -13.7811i q^{67} +3.80432i q^{71} -3.19080i q^{73} +1.03291 q^{77} +7.33240 q^{79} -16.6260i q^{83} -19.4670i q^{85} -11.8964i q^{89} +(3.12499 + 1.79846i) q^{91} +7.10175 q^{95} +8.60355i q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q134q17+6q23+2q25+2q296q356q438q4922q5320q55+8q61+6q6526q7910q91+18q95+O(q100) 8 q + 2 q^{13} - 4 q^{17} + 6 q^{23} + 2 q^{25} + 2 q^{29} - 6 q^{35} - 6 q^{43} - 8 q^{49} - 22 q^{53} - 20 q^{55} + 8 q^{61} + 6 q^{65} - 26 q^{79} - 10 q^{91} + 18 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 2.79846i 1.25151i −0.780020 0.625754i 0.784791π-0.784791\pi
0.780020 0.625754i 0.215209π-0.215209\pi
66 0 0
77 1.00000i 0.377964i
88 0 0
99 0 0
1010 0 0
1111 1.03291i 0.311433i 0.987802 + 0.155716i 0.0497686π0.0497686\pi
−0.987802 + 0.155716i 0.950231π0.950231\pi
1212 0 0
1313 −1.79846 + 3.12499i −0.498802 + 0.866716i
1414 0 0
1515 0 0
1616 0 0
1717 6.95635 1.68716 0.843581 0.537001i 0.180443π-0.180443\pi
0.843581 + 0.537001i 0.180443π0.180443\pi
1818 0 0
1919 2.53774i 0.582197i 0.956693 + 0.291098i 0.0940207π0.0940207\pi
−0.956693 + 0.291098i 0.905979π0.905979\pi
2020 0 0
2121 0 0
2222 0 0
2323 3.83136 0.798894 0.399447 0.916756i 0.369202π-0.369202\pi
0.399447 + 0.916756i 0.369202π0.369202\pi
2424 0 0
2525 −2.83136 −0.566272
2626 0 0
2727 0 0
2828 0 0
2929 5.10175 0.947370 0.473685 0.880694i 0.342923π-0.342923\pi
0.473685 + 0.880694i 0.342923π0.342923\pi
3030 0 0
3131 3.78880i 0.680488i 0.940337 + 0.340244i 0.110510π0.110510\pi
−0.940337 + 0.340244i 0.889490π0.889490\pi
3232 0 0
3333 0 0
3434 0 0
3535 −2.79846 −0.473026
3636 0 0
3737 6.20741i 1.02049i 0.860029 + 0.510246i 0.170446π0.170446\pi
−0.860029 + 0.510246i 0.829554π0.829554\pi
3838 0 0
3939 0 0
4040 0 0
4141 0.990338i 0.154665i 0.997005 + 0.0773324i 0.0246403π0.0246403\pi
−0.997005 + 0.0773324i 0.975360π0.975360\pi
4242 0 0
4343 0.560979 0.0855485 0.0427743 0.999085i 0.486380π-0.486380\pi
0.0427743 + 0.999085i 0.486380π0.486380\pi
4444 0 0
4545 0 0
4646 0 0
4747 7.19080i 1.04889i −0.851446 0.524443i 0.824274π-0.824274\pi
0.851446 0.524443i 0.175726π-0.175726\pi
4848 0 0
4949 −1.00000 −0.142857
5050 0 0
5151 0 0
5252 0 0
5353 −1.17830 −0.161852 −0.0809260 0.996720i 0.525788π-0.525788\pi
−0.0809260 + 0.996720i 0.525788π0.525788\pi
5454 0 0
5555 2.89054 0.389760
5656 0 0
5757 0 0
5858 0 0
5959 11.9234i 1.55230i 0.630548 + 0.776150i 0.282830π0.282830\pi
−0.630548 + 0.776150i 0.717170π0.717170\pi
6060 0 0
6161 13.8469 1.77291 0.886456 0.462812i 0.153160π-0.153160\pi
0.886456 + 0.462812i 0.153160π0.153160\pi
6262 0 0
6363 0 0
6464 0 0
6565 8.74515 + 5.03291i 1.08470 + 0.624255i
6666 0 0
6767 13.7811i 1.68363i −0.539769 0.841813i 0.681488π-0.681488\pi
0.539769 0.841813i 0.318512π-0.318512\pi
6868 0 0
6969 0 0
7070 0 0
7171 3.80432i 0.451490i 0.974186 + 0.225745i 0.0724816π0.0724816\pi
−0.974186 + 0.225745i 0.927518π0.927518\pi
7272 0 0
7373 3.19080i 0.373455i −0.982412 0.186727i 0.940212π-0.940212\pi
0.982412 0.186727i 0.0597881π-0.0597881\pi
7474 0 0
7575 0 0
7676 0 0
7777 1.03291 0.117710
7878 0 0
7979 7.33240 0.824959 0.412480 0.910967i 0.364663π-0.364663\pi
0.412480 + 0.910967i 0.364663π0.364663\pi
8080 0 0
8181 0 0
8282 0 0
8383 16.6260i 1.82494i −0.409140 0.912472i 0.634171π-0.634171\pi
0.409140 0.912472i 0.365829π-0.365829\pi
8484 0 0
8585 19.4670i 2.11150i
8686 0 0
8787 0 0
8888 0 0
8989 11.8964i 1.26102i −0.776182 0.630508i 0.782846π-0.782846\pi
0.776182 0.630508i 0.217154π-0.217154\pi
9090 0 0
9191 3.12499 + 1.79846i 0.327588 + 0.188530i
9292 0 0
9393 0 0
9494 0 0
9595 7.10175 0.728624
9696 0 0
9797 8.60355i 0.873558i 0.899569 + 0.436779i 0.143881π0.143881\pi
−0.899569 + 0.436779i 0.856119π0.856119\pi
9898 0 0
9999 0 0
100100 0 0
101101 −8.36910 −0.832756 −0.416378 0.909192i 0.636701π-0.636701\pi
−0.416378 + 0.909192i 0.636701π0.636701\pi
102102 0 0
103103 0.521442 0.0513792 0.0256896 0.999670i 0.491822π-0.491822\pi
0.0256896 + 0.999670i 0.491822π0.491822\pi
104104 0 0
105105 0 0
106106 0 0
107107 −9.43523 −0.912138 −0.456069 0.889944i 0.650743π-0.650743\pi
−0.456069 + 0.889944i 0.650743π0.650743\pi
108108 0 0
109109 13.6860i 1.31088i 0.755248 + 0.655439i 0.227516π0.227516\pi
−0.755248 + 0.655439i 0.772484π0.772484\pi
110110 0 0
111111 0 0
112112 0 0
113113 12.2655 1.15384 0.576921 0.816800i 0.304254π-0.304254\pi
0.576921 + 0.816800i 0.304254π0.304254\pi
114114 0 0
115115 10.7219i 0.999823i
116116 0 0
117117 0 0
118118 0 0
119119 6.95635i 0.637688i
120120 0 0
121121 9.93311 0.903010
122122 0 0
123123 0 0
124124 0 0
125125 6.06884i 0.542814i
126126 0 0
127127 −10.9331 −0.970156 −0.485078 0.874471i 0.661209π-0.661209\pi
−0.485078 + 0.874471i 0.661209π0.661209\pi
128128 0 0
129129 0 0
130130 0 0
131131 6.58725 0.575531 0.287765 0.957701i 0.407088π-0.407088\pi
0.287765 + 0.957701i 0.407088π0.407088\pi
132132 0 0
133133 2.53774 0.220050
134134 0 0
135135 0 0
136136 0 0
137137 12.8333i 1.09642i −0.836340 0.548212i 0.815309π-0.815309\pi
0.836340 0.548212i 0.184691π-0.184691\pi
138138 0 0
139139 −18.5998 −1.57761 −0.788805 0.614643i 0.789300π-0.789300\pi
−0.788805 + 0.614643i 0.789300π0.789300\pi
140140 0 0
141141 0 0
142142 0 0
143143 −3.22782 1.85764i −0.269924 0.155343i
144144 0 0
145145 14.2770i 1.18564i
146146 0 0
147147 0 0
148148 0 0
149149 9.97676i 0.817328i −0.912685 0.408664i 0.865995π-0.865995\pi
0.912685 0.408664i 0.134005π-0.134005\pi
150150 0 0
151151 14.0543i 1.14372i −0.820350 0.571861i 0.806222π-0.806222\pi
0.820350 0.571861i 0.193778π-0.193778\pi
152152 0 0
153153 0 0
154154 0 0
155155 10.6028 0.851636
156156 0 0
157157 −7.76858 −0.620000 −0.310000 0.950737i 0.600329π-0.600329\pi
−0.310000 + 0.950737i 0.600329π0.600329\pi
158158 0 0
159159 0 0
160160 0 0
161161 3.83136i 0.301954i
162162 0 0
163163 7.39342i 0.579098i −0.957163 0.289549i 0.906495π-0.906495\pi
0.957163 0.289549i 0.0935053π-0.0935053\pi
164164 0 0
165165 0 0
166166 0 0
167167 15.7122i 1.21585i 0.793995 + 0.607925i 0.207998π0.207998\pi
−0.793995 + 0.607925i 0.792002π0.792002\pi
168168 0 0
169169 −6.53110 11.2403i −0.502393 0.864640i
170170 0 0
171171 0 0
172172 0 0
173173 0.415585 0.0315963 0.0157982 0.999875i 0.494971π-0.494971\pi
0.0157982 + 0.999875i 0.494971π0.494971\pi
174174 0 0
175175 2.83136i 0.214031i
176176 0 0
177177 0 0
178178 0 0
179179 −3.90792 −0.292091 −0.146046 0.989278i 0.546655π-0.546655\pi
−0.146046 + 0.989278i 0.546655π0.546655\pi
180180 0 0
181181 4.79151 0.356150 0.178075 0.984017i 0.443013π-0.443013\pi
0.178075 + 0.984017i 0.443013π0.443013\pi
182182 0 0
183183 0 0
184184 0 0
185185 17.3712 1.27715
186186 0 0
187187 7.18525i 0.525437i
188188 0 0
189189 0 0
190190 0 0
191191 8.62905 0.624376 0.312188 0.950020i 0.398938π-0.398938\pi
0.312188 + 0.950020i 0.398938π0.398938\pi
192192 0 0
193193 24.4535i 1.76020i 0.474789 + 0.880100i 0.342524π0.342524\pi
−0.474789 + 0.880100i 0.657476π0.657476\pi
194194 0 0
195195 0 0
196196 0 0
197197 7.14128i 0.508795i 0.967100 + 0.254398i 0.0818772π0.0818772\pi
−0.967100 + 0.254398i 0.918123π0.918123\pi
198198 0 0
199199 −1.00284 −0.0710892 −0.0355446 0.999368i 0.511317π-0.511317\pi
−0.0355446 + 0.999368i 0.511317π0.511317\pi
200200 0 0
201201 0 0
202202 0 0
203203 5.10175i 0.358072i
204204 0 0
205205 2.77142 0.193564
206206 0 0
207207 0 0
208208 0 0
209209 −2.62124 −0.181315
210210 0 0
211211 26.2655 1.80819 0.904096 0.427329i 0.140546π-0.140546\pi
0.904096 + 0.427329i 0.140546π0.140546\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.56988i 0.107065i
216216 0 0
217217 3.78880 0.257200
218218 0 0
219219 0 0
220220 0 0
221221 −12.5107 + 21.7385i −0.841561 + 1.46229i
222222 0 0
223223 17.7540i 1.18890i 0.804133 + 0.594449i 0.202630π0.202630\pi
−0.804133 + 0.594449i 0.797370π0.797370\pi
224224 0 0
225225 0 0
226226 0 0
227227 17.8276i 1.18326i −0.806211 0.591629i 0.798485π-0.798485\pi
0.806211 0.591629i 0.201515π-0.201515\pi
228228 0 0
229229 4.21423i 0.278484i −0.990258 0.139242i 0.955533π-0.955533\pi
0.990258 0.139242i 0.0444667π-0.0444667\pi
230230 0 0
231231 0 0
232232 0 0
233233 28.2880 1.85321 0.926604 0.376039i 0.122714π-0.122714\pi
0.926604 + 0.376039i 0.122714π0.122714\pi
234234 0 0
235235 −20.1231 −1.31269
236236 0 0
237237 0 0
238238 0 0
239239 8.94385i 0.578530i −0.957249 0.289265i 0.906589π-0.906589\pi
0.957249 0.289265i 0.0934108π-0.0934108\pi
240240 0 0
241241 17.0019i 1.09519i −0.836743 0.547596i 0.815543π-0.815543\pi
0.836743 0.547596i 0.184457π-0.184457\pi
242242 0 0
243243 0 0
244244 0 0
245245 2.79846i 0.178787i
246246 0 0
247247 −7.93040 4.56401i −0.504599 0.290401i
248248 0 0
249249 0 0
250250 0 0
251251 6.70637 0.423303 0.211651 0.977345i 0.432116π-0.432116\pi
0.211651 + 0.977345i 0.432116π0.432116\pi
252252 0 0
253253 3.95743i 0.248802i
254254 0 0
255255 0 0
256256 0 0
257257 14.6656 0.914813 0.457406 0.889258i 0.348779π-0.348779\pi
0.457406 + 0.889258i 0.348779π0.348779\pi
258258 0 0
259259 6.20741 0.385710
260260 0 0
261261 0 0
262262 0 0
263263 6.02627 0.371596 0.185798 0.982588i 0.440513π-0.440513\pi
0.185798 + 0.982588i 0.440513π0.440513\pi
264264 0 0
265265 3.29742i 0.202559i
266266 0 0
267267 0 0
268268 0 0
269269 0.825495 0.0503313 0.0251657 0.999683i 0.491989π-0.491989\pi
0.0251657 + 0.999683i 0.491989π0.491989\pi
270270 0 0
271271 9.82757i 0.596982i −0.954412 0.298491i 0.903517π-0.903517\pi
0.954412 0.298491i 0.0964833π-0.0964833\pi
272272 0 0
273273 0 0
274274 0 0
275275 2.92453i 0.176356i
276276 0 0
277277 27.8517 1.67344 0.836722 0.547627i 0.184469π-0.184469\pi
0.836722 + 0.547627i 0.184469π0.184469\pi
278278 0 0
279279 0 0
280280 0 0
281281 4.04257i 0.241159i −0.992704 0.120580i 0.961525π-0.961525\pi
0.992704 0.120580i 0.0384753π-0.0384753\pi
282282 0 0
283283 −29.7596 −1.76902 −0.884512 0.466517i 0.845509π-0.845509\pi
−0.884512 + 0.466517i 0.845509π0.845509\pi
284284 0 0
285285 0 0
286286 0 0
287287 0.990338 0.0584578
288288 0 0
289289 31.3908 1.84652
290290 0 0
291291 0 0
292292 0 0
293293 29.8091i 1.74147i 0.491755 + 0.870733i 0.336355π0.336355\pi
−0.491755 + 0.870733i 0.663645π0.663645\pi
294294 0 0
295295 33.3673 1.94272
296296 0 0
297297 0 0
298298 0 0
299299 −6.89054 + 11.9730i −0.398490 + 0.692414i
300300 0 0
301301 0.560979i 0.0323343i
302302 0 0
303303 0 0
304304 0 0
305305 38.7499i 2.21881i
306306 0 0
307307 18.5928i 1.06115i 0.847639 + 0.530574i 0.178023π0.178023\pi
−0.847639 + 0.530574i 0.821977π0.821977\pi
308308 0 0
309309 0 0
310310 0 0
311311 −15.9119 −0.902283 −0.451142 0.892452i 0.648983π-0.648983\pi
−0.451142 + 0.892452i 0.648983π0.648983\pi
312312 0 0
313313 −1.79575 −0.101502 −0.0507508 0.998711i 0.516161π-0.516161\pi
−0.0507508 + 0.998711i 0.516161π0.516161\pi
314314 0 0
315315 0 0
316316 0 0
317317 16.0311i 0.900394i 0.892929 + 0.450197i 0.148646π0.148646\pi
−0.892929 + 0.450197i 0.851354π0.851354\pi
318318 0 0
319319 5.26962i 0.295042i
320320 0 0
321321 0 0
322322 0 0
323323 17.6534i 0.982260i
324324 0 0
325325 5.09208 8.84797i 0.282458 0.490797i
326326 0 0
327327 0 0
328328 0 0
329329 −7.19080 −0.396442
330330 0 0
331331 6.81791i 0.374746i 0.982289 + 0.187373i 0.0599973π0.0599973\pi
−0.982289 + 0.187373i 0.940003π0.940003\pi
332332 0 0
333333 0 0
334334 0 0
335335 −38.5658 −2.10707
336336 0 0
337337 0.418615 0.0228034 0.0114017 0.999935i 0.496371π-0.496371\pi
0.0114017 + 0.999935i 0.496371π0.496371\pi
338338 0 0
339339 0 0
340340 0 0
341341 −3.91347 −0.211926
342342 0 0
343343 1.00000i 0.0539949i
344344 0 0
345345 0 0
346346 0 0
347347 10.0658 0.540361 0.270180 0.962810i 0.412917π-0.412917\pi
0.270180 + 0.962810i 0.412917π0.412917\pi
348348 0 0
349349 8.27233i 0.442808i −0.975182 0.221404i 0.928936π-0.928936\pi
0.975182 0.221404i 0.0710639π-0.0710639\pi
350350 0 0
351351 0 0
352352 0 0
353353 16.3908i 0.872395i −0.899851 0.436197i 0.856325π-0.856325\pi
0.899851 0.436197i 0.143675π-0.143675\pi
354354 0 0
355355 10.6462 0.565044
356356 0 0
357357 0 0
358358 0 0
359359 32.1512i 1.69687i 0.529297 + 0.848437i 0.322456π0.322456\pi
−0.529297 + 0.848437i 0.677544π0.677544\pi
360360 0 0
361361 12.5599 0.661047
362362 0 0
363363 0 0
364364 0 0
365365 −8.92931 −0.467382
366366 0 0
367367 −7.79575 −0.406935 −0.203467 0.979082i 0.565221π-0.565221\pi
−0.203467 + 0.979082i 0.565221π0.565221\pi
368368 0 0
369369 0 0
370370 0 0
371371 1.17830i 0.0611743i
372372 0 0
373373 31.7371 1.64329 0.821643 0.570003i 0.193058π-0.193058\pi
0.821643 + 0.570003i 0.193058π0.193058\pi
374374 0 0
375375 0 0
376376 0 0
377377 −9.17527 + 15.9429i −0.472550 + 0.821101i
378378 0 0
379379 30.3236i 1.55762i 0.627261 + 0.778809i 0.284176π0.284176\pi
−0.627261 + 0.778809i 0.715824π0.715824\pi
380380 0 0
381381 0 0
382382 0 0
383383 14.0193i 0.716354i −0.933654 0.358177i 0.883398π-0.883398\pi
0.933654 0.358177i 0.116602π-0.116602\pi
384384 0 0
385385 2.89054i 0.147316i
386386 0 0
387387 0 0
388388 0 0
389389 −19.8887 −1.00840 −0.504198 0.863588i 0.668212π-0.668212\pi
−0.504198 + 0.863588i 0.668212π0.668212\pi
390390 0 0
391391 26.6523 1.34786
392392 0 0
393393 0 0
394394 0 0
395395 20.5194i 1.03244i
396396 0 0
397397 14.7219i 0.738871i 0.929256 + 0.369436i 0.120449π0.120449\pi
−0.929256 + 0.369436i 0.879551π0.879551\pi
398398 0 0
399399 0 0
400400 0 0
401401 19.6412i 0.980836i 0.871487 + 0.490418i 0.163156π0.163156\pi
−0.871487 + 0.490418i 0.836844π0.836844\pi
402402 0 0
403403 −11.8399 6.81399i −0.589789 0.339429i
404404 0 0
405405 0 0
406406 0 0
407407 −6.41166 −0.317814
408408 0 0
409409 24.1132i 1.19232i −0.802866 0.596160i 0.796693π-0.796693\pi
0.802866 0.596160i 0.203307π-0.203307\pi
410410 0 0
411411 0 0
412412 0 0
413413 11.9234 0.586714
414414 0 0
415415 −46.5272 −2.28393
416416 0 0
417417 0 0
418418 0 0
419419 19.7818 0.966406 0.483203 0.875508i 0.339473π-0.339473\pi
0.483203 + 0.875508i 0.339473π0.339473\pi
420420 0 0
421421 19.1237i 0.932033i 0.884776 + 0.466016i 0.154311π0.154311\pi
−0.884776 + 0.466016i 0.845689π0.845689\pi
422422 0 0
423423 0 0
424424 0 0
425425 −19.6959 −0.955394
426426 0 0
427427 13.8469i 0.670098i
428428 0 0
429429 0 0
430430 0 0
431431 8.87588i 0.427536i 0.976884 + 0.213768i 0.0685736π0.0685736\pi
−0.976884 + 0.213768i 0.931426π0.931426\pi
432432 0 0
433433 −36.9341 −1.77494 −0.887470 0.460866i 0.847539π-0.847539\pi
−0.887470 + 0.460866i 0.847539π0.847539\pi
434434 0 0
435435 0 0
436436 0 0
437437 9.72299i 0.465113i
438438 0 0
439439 −20.6591 −0.986006 −0.493003 0.870028i 0.664101π-0.664101\pi
−0.493003 + 0.870028i 0.664101π0.664101\pi
440440 0 0
441441 0 0
442442 0 0
443443 −2.85492 −0.135641 −0.0678207 0.997698i 0.521605π-0.521605\pi
−0.0678207 + 0.997698i 0.521605π0.521605\pi
444444 0 0
445445 −33.2916 −1.57817
446446 0 0
447447 0 0
448448 0 0
449449 30.0443i 1.41788i −0.705269 0.708940i 0.749174π-0.749174\pi
0.705269 0.708940i 0.250826π-0.250826\pi
450450 0 0
451451 −1.02293 −0.0481677
452452 0 0
453453 0 0
454454 0 0
455455 5.03291 8.74515i 0.235946 0.409979i
456456 0 0
457457 28.6491i 1.34015i −0.742293 0.670075i 0.766262π-0.766262\pi
0.742293 0.670075i 0.233738π-0.233738\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.922363i 0.0429587i 0.999769 + 0.0214794i 0.00683762π0.00683762\pi
−0.999769 + 0.0214794i 0.993162π0.993162\pi
462462 0 0
463463 26.0929i 1.21264i 0.795220 + 0.606321i 0.207355π0.207355\pi
−0.795220 + 0.606321i 0.792645π0.792645\pi
464464 0 0
465465 0 0
466466 0 0
467467 −29.5553 −1.36766 −0.683829 0.729642i 0.739687π-0.739687\pi
−0.683829 + 0.729642i 0.739687π0.739687\pi
468468 0 0
469469 −13.7811 −0.636351
470470 0 0
471471 0 0
472472 0 0
473473 0.579438i 0.0266426i
474474 0 0
475475 7.18525i 0.329682i
476476 0 0
477477 0 0
478478 0 0
479479 15.8954i 0.726280i 0.931735 + 0.363140i 0.118295π0.118295\pi
−0.931735 + 0.363140i 0.881705π0.881705\pi
480480 0 0
481481 −19.3981 11.1638i −0.884476 0.509024i
482482 0 0
483483 0 0
484484 0 0
485485 24.0767 1.09326
486486 0 0
487487 0.0851336i 0.00385777i 0.999998 + 0.00192889i 0.000613984π0.000613984\pi
−0.999998 + 0.00192889i 0.999386π0.999386\pi
488488 0 0
489489 0 0
490490 0 0
491491 −2.56324 −0.115678 −0.0578388 0.998326i 0.518421π-0.518421\pi
−0.0578388 + 0.998326i 0.518421π0.518421\pi
492492 0 0
493493 35.4895 1.59837
494494 0 0
495495 0 0
496496 0 0
497497 3.80432 0.170647
498498 0 0
499499 28.6941i 1.28452i 0.766485 + 0.642262i 0.222004π0.222004\pi
−0.766485 + 0.642262i 0.777996π0.777996\pi
500500 0 0
501501 0 0
502502 0 0
503503 32.7056 1.45827 0.729136 0.684369i 0.239922π-0.239922\pi
0.729136 + 0.684369i 0.239922π0.239922\pi
504504 0 0
505505 23.4206i 1.04220i
506506 0 0
507507 0 0
508508 0 0
509509 26.0938i 1.15659i −0.815828 0.578295i 0.803718π-0.803718\pi
0.815828 0.578295i 0.196282π-0.196282\pi
510510 0 0
511511 −3.19080 −0.141153
512512 0 0
513513 0 0
514514 0 0
515515 1.45923i 0.0643015i
516516 0 0
517517 7.42741 0.326657
518518 0 0
519519 0 0
520520 0 0
521521 1.75570 0.0769185 0.0384592 0.999260i 0.487755π-0.487755\pi
0.0384592 + 0.999260i 0.487755π0.487755\pi
522522 0 0
523523 −32.3779 −1.41579 −0.707893 0.706319i 0.750354π-0.750354\pi
−0.707893 + 0.706319i 0.750354π0.750354\pi
524524 0 0
525525 0 0
526526 0 0
527527 26.3562i 1.14809i
528528 0 0
529529 −8.32066 −0.361768
530530 0 0
531531 0 0
532532 0 0
533533 −3.09480 1.78108i −0.134050 0.0771472i
534534 0 0
535535 26.4041i 1.14155i
536536 0 0
537537 0 0
538538 0 0
539539 1.03291i 0.0444904i
540540 0 0
541541 8.52536i 0.366534i −0.983063 0.183267i 0.941333π-0.941333\pi
0.983063 0.183267i 0.0586673π-0.0586673\pi
542542 0 0
543543 0 0
544544 0 0
545545 38.2996 1.64057
546546 0 0
547547 1.14355 0.0488945 0.0244473 0.999701i 0.492217π-0.492217\pi
0.0244473 + 0.999701i 0.492217π0.492217\pi
548548 0 0
549549 0 0
550550 0 0
551551 12.9469i 0.551556i
552552 0 0
553553 7.33240i 0.311805i
554554 0 0
555555 0 0
556556 0 0
557557 42.8275i 1.81466i −0.420421 0.907329i 0.638118π-0.638118\pi
0.420421 0.907329i 0.361882π-0.361882\pi
558558 0 0
559559 −1.00890 + 1.75305i −0.0426718 + 0.0741463i
560560 0 0
561561 0 0
562562 0 0
563563 −13.5754 −0.572136 −0.286068 0.958209i 0.592348π-0.592348\pi
−0.286068 + 0.958209i 0.592348π0.592348\pi
564564 0 0
565565 34.3245i 1.44404i
566566 0 0
567567 0 0
568568 0 0
569569 8.87109 0.371896 0.185948 0.982560i 0.440464π-0.440464\pi
0.185948 + 0.982560i 0.440464π0.440464\pi
570570 0 0
571571 6.28093 0.262849 0.131424 0.991326i 0.458045π-0.458045\pi
0.131424 + 0.991326i 0.458045π0.458045\pi
572572 0 0
573573 0 0
574574 0 0
575575 −10.8480 −0.452392
576576 0 0
577577 25.1005i 1.04495i −0.852656 0.522473i 0.825010π-0.825010\pi
0.852656 0.522473i 0.174990π-0.174990\pi
578578 0 0
579579 0 0
580580 0 0
581581 −16.6260 −0.689764
582582 0 0
583583 1.21707i 0.0504060i
584584 0 0
585585 0 0
586586 0 0
587587 28.2963i 1.16791i −0.811784 0.583957i 0.801503π-0.801503\pi
0.811784 0.583957i 0.198497π-0.198497\pi
588588 0 0
589589 −9.61496 −0.396178
590590 0 0
591591 0 0
592592 0 0
593593 12.8643i 0.528272i 0.964485 + 0.264136i 0.0850868π0.0850868\pi
−0.964485 + 0.264136i 0.914913π0.914913\pi
594594 0 0
595595 −19.4670 −0.798071
596596 0 0
597597 0 0
598598 0 0
599599 −25.5685 −1.04470 −0.522350 0.852731i 0.674944π-0.674944\pi
−0.522350 + 0.852731i 0.674944π0.674944\pi
600600 0 0
601601 6.63763 0.270755 0.135377 0.990794i 0.456775π-0.456775\pi
0.135377 + 0.990794i 0.456775π0.456775\pi
602602 0 0
603603 0 0
604604 0 0
605605 27.7974i 1.13012i
606606 0 0
607607 22.3226 0.906047 0.453023 0.891499i 0.350345π-0.350345\pi
0.453023 + 0.891499i 0.350345π0.350345\pi
608608 0 0
609609 0 0
610610 0 0
611611 22.4712 + 12.9323i 0.909086 + 0.523187i
612612 0 0
613613 4.23671i 0.171119i 0.996333 + 0.0855596i 0.0272678π0.0272678\pi
−0.996333 + 0.0855596i 0.972732π0.972732\pi
614614 0 0
615615 0 0
616616 0 0
617617 14.0193i 0.564397i −0.959356 0.282198i 0.908936π-0.908936\pi
0.959356 0.282198i 0.0910636π-0.0910636\pi
618618 0 0
619619 23.8469i 0.958487i 0.877682 + 0.479244i 0.159089π0.159089\pi
−0.877682 + 0.479244i 0.840911π0.840911\pi
620620 0 0
621621 0 0
622622 0 0
623623 −11.8964 −0.476619
624624 0 0
625625 −31.1402 −1.24561
626626 0 0
627627 0 0
628628 0 0
629629 43.1809i 1.72174i
630630 0 0
631631 7.18624i 0.286080i 0.989717 + 0.143040i 0.0456877π0.0456877\pi
−0.989717 + 0.143040i 0.954312π0.954312\pi
632632 0 0
633633 0 0
634634 0 0
635635 30.5958i 1.21416i
636636 0 0
637637 1.79846 3.12499i 0.0712575 0.123817i
638638 0 0
639639 0 0
640640 0 0
641641 8.05886 0.318306 0.159153 0.987254i 0.449124π-0.449124\pi
0.159153 + 0.987254i 0.449124π0.449124\pi
642642 0 0
643643 28.4148i 1.12057i −0.828300 0.560286i 0.810691π-0.810691\pi
0.828300 0.560286i 0.189309π-0.189309\pi
644644 0 0
645645 0 0
646646 0 0
647647 −37.6791 −1.48132 −0.740659 0.671881i 0.765487π-0.765487\pi
−0.740659 + 0.671881i 0.765487π0.765487\pi
648648 0 0
649649 −12.3158 −0.483437
650650 0 0
651651 0 0
652652 0 0
653653 −37.0486 −1.44982 −0.724911 0.688842i 0.758119π-0.758119\pi
−0.724911 + 0.688842i 0.758119π0.758119\pi
654654 0 0
655655 18.4341i 0.720282i
656656 0 0
657657 0 0
658658 0 0
659659 −44.4553 −1.73173 −0.865867 0.500274i 0.833233π-0.833233\pi
−0.865867 + 0.500274i 0.833233π0.833233\pi
660660 0 0
661661 40.3413i 1.56909i 0.620069 + 0.784547i 0.287105π0.287105\pi
−0.620069 + 0.784547i 0.712895π0.712895\pi
662662 0 0
663663 0 0
664664 0 0
665665 7.10175i 0.275394i
666666 0 0
667667 19.5466 0.756849
668668 0 0
669669 0 0
670670 0 0
671671 14.3025i 0.552143i
672672 0 0
673673 −16.8024 −0.647684 −0.323842 0.946111i 0.604975π-0.604975\pi
−0.323842 + 0.946111i 0.604975π0.604975\pi
674674 0 0
675675 0 0
676676 0 0
677677 46.5650 1.78964 0.894819 0.446429i 0.147304π-0.147304\pi
0.894819 + 0.446429i 0.147304π0.147304\pi
678678 0 0
679679 8.60355 0.330174
680680 0 0
681681 0 0
682682 0 0
683683 5.79498i 0.221739i 0.993835 + 0.110869i 0.0353635π0.0353635\pi
−0.993835 + 0.110869i 0.964636π0.964636\pi
684684 0 0
685685 −35.9135 −1.37218
686686 0 0
687687 0 0
688688 0 0
689689 2.11912 3.68217i 0.0807321 0.140280i
690690 0 0
691691 27.1213i 1.03174i −0.856666 0.515871i 0.827468π-0.827468\pi
0.856666 0.515871i 0.172532π-0.172532\pi
692692 0 0
693693 0 0
694694 0 0
695695 52.0506i 1.97439i
696696 0 0
697697 6.88914i 0.260945i
698698 0 0
699699 0 0
700700 0 0
701701 −11.0283 −0.416535 −0.208267 0.978072i 0.566782π-0.566782\pi
−0.208267 + 0.978072i 0.566782π0.566782\pi
702702 0 0
703703 −15.7528 −0.594127
704704 0 0
705705 0 0
706706 0 0
707707 8.36910i 0.314752i
708708 0 0
709709 49.7496i 1.86839i 0.356768 + 0.934193i 0.383879π0.383879\pi
−0.356768 + 0.934193i 0.616121π0.616121\pi
710710 0 0
711711 0 0
712712 0 0
713713 14.5162i 0.543638i
714714 0 0
715715 −5.19851 + 9.03291i −0.194413 + 0.337811i
716716 0 0
717717 0 0
718718 0 0
719719 −28.5650 −1.06529 −0.532647 0.846337i 0.678803π-0.678803\pi
−0.532647 + 0.846337i 0.678803π0.678803\pi
720720 0 0
721721 0.521442i 0.0194195i
722722 0 0
723723 0 0
724724 0 0
725725 −14.4449 −0.536470
726726 0 0
727727 36.5250 1.35464 0.677318 0.735691i 0.263142π-0.263142\pi
0.677318 + 0.735691i 0.263142π0.263142\pi
728728 0 0
729729 0 0
730730 0 0
731731 3.90237 0.144334
732732 0 0
733733 18.7444i 0.692340i 0.938172 + 0.346170i 0.112518π0.112518\pi
−0.938172 + 0.346170i 0.887482π0.887482\pi
734734 0 0
735735 0 0
736736 0 0
737737 14.2345 0.524336
738738 0 0
739739 11.1838i 0.411405i −0.978615 0.205702i 0.934052π-0.934052\pi
0.978615 0.205702i 0.0659478π-0.0659478\pi
740740 0 0
741741 0 0
742742 0 0
743743 32.7986i 1.20326i −0.798774 0.601632i 0.794518π-0.794518\pi
0.798774 0.601632i 0.205482π-0.205482\pi
744744 0 0
745745 −27.9195 −1.02289
746746 0 0
747747 0 0
748748 0 0
749749 9.43523i 0.344756i
750750 0 0
751751 −28.7451 −1.04893 −0.524463 0.851433i 0.675734π-0.675734\pi
−0.524463 + 0.851433i 0.675734π0.675734\pi
752752 0 0
753753 0 0
754754 0 0
755755 −39.3304 −1.43138
756756 0 0
757757 12.4952 0.454145 0.227072 0.973878i 0.427085π-0.427085\pi
0.227072 + 0.973878i 0.427085π0.427085\pi
758758 0 0
759759 0 0
760760 0 0
761761 29.6628i 1.07528i −0.843175 0.537639i 0.819316π-0.819316\pi
0.843175 0.537639i 0.180684π-0.180684\pi
762762 0 0
763763 13.6860 0.495465
764764 0 0
765765 0 0
766766 0 0
767767 −37.2606 21.4438i −1.34540 0.774291i
768768 0 0
769769 40.8488i 1.47305i −0.676412 0.736523i 0.736466π-0.736466\pi
0.676412 0.736523i 0.263534π-0.263534\pi
770770 0 0
771771 0 0
772772 0 0
773773 19.4045i 0.697932i −0.937135 0.348966i 0.886533π-0.886533\pi
0.937135 0.348966i 0.113467π-0.113467\pi
774774 0 0
775775 10.7275i 0.385341i
776776 0 0
777777 0 0
778778 0 0
779779 −2.51322 −0.0900453
780780 0 0
781781 −3.92951 −0.140609
782782 0 0
783783 0 0
784784 0 0
785785 21.7400i 0.775935i
786786 0 0
787787 10.0913i 0.359717i −0.983693 0.179858i 0.942436π-0.942436\pi
0.983693 0.179858i 0.0575639π-0.0575639\pi
788788 0 0
789789 0 0
790790 0 0
791791 12.2655i 0.436111i
792792 0 0
793793 −24.9030 + 43.2714i −0.884333 + 1.53661i
794794 0 0
795795 0 0
796796 0 0
797797 11.2735 0.399329 0.199665 0.979864i 0.436015π-0.436015\pi
0.199665 + 0.979864i 0.436015π0.436015\pi
798798 0 0
799799 50.0217i 1.76964i
800800 0 0
801801 0 0
802802 0 0
803803 3.29579 0.116306
804804 0 0
805805 −10.7219 −0.377897
806806 0 0
807807 0 0
808808 0 0
809809 −17.4236 −0.612581 −0.306290 0.951938i 0.599088π-0.599088\pi
−0.306290 + 0.951938i 0.599088π0.599088\pi
810810 0 0
811811 35.9555i 1.26257i 0.775552 + 0.631284i 0.217472π0.217472\pi
−0.775552 + 0.631284i 0.782528π0.782528\pi
812812 0 0
813813 0 0
814814 0 0
815815 −20.6902 −0.724745
816816 0 0
817817 1.42362i 0.0498061i
818818 0 0
819819 0 0
820820 0 0
821821 15.1183i 0.527631i 0.964573 + 0.263816i 0.0849810π0.0849810\pi
−0.964573 + 0.263816i 0.915019π0.915019\pi
822822 0 0
823823 43.2335 1.50702 0.753512 0.657434i 0.228358π-0.228358\pi
0.753512 + 0.657434i 0.228358π0.228358\pi
824824 0 0
825825 0 0
826826 0 0
827827 50.4513i 1.75436i 0.480158 + 0.877182i 0.340579π0.340579\pi
−0.480158 + 0.877182i 0.659421π0.659421\pi
828828 0 0
829829 1.79727 0.0624219 0.0312110 0.999513i 0.490064π-0.490064\pi
0.0312110 + 0.999513i 0.490064π0.490064\pi
830830 0 0
831831 0 0
832832 0 0
833833 −6.95635 −0.241023
834834 0 0
835835 43.9700 1.52165
836836 0 0
837837 0 0
838838 0 0
839839 4.72104i 0.162988i −0.996674 0.0814942i 0.974031π-0.974031\pi
0.996674 0.0814942i 0.0259692π-0.0259692\pi
840840 0 0
841841 −2.97220 −0.102490
842842 0 0
843843 0 0
844844 0 0
845845 −31.4555 + 18.2770i −1.08210 + 0.628748i
846846 0 0
847847 9.93311i 0.341306i
848848 0 0
849849 0 0
850850 0 0
851851 23.7828i 0.815265i
852852 0 0
853853 48.8428i 1.67234i −0.548467 0.836172i 0.684788π-0.684788\pi
0.548467 0.836172i 0.315212π-0.315212\pi
854854 0 0
855855 0 0
856856 0 0
857857 −14.9964 −0.512267 −0.256134 0.966641i 0.582449π-0.582449\pi
−0.256134 + 0.966641i 0.582449π0.582449\pi
858858 0 0
859859 −33.0464 −1.12753 −0.563764 0.825936i 0.690647π-0.690647\pi
−0.563764 + 0.825936i 0.690647π0.690647\pi
860860 0 0
861861 0 0
862862 0 0
863863 47.1122i 1.60372i 0.597513 + 0.801859i 0.296156π0.296156\pi
−0.597513 + 0.801859i 0.703844π0.703844\pi
864864 0 0
865865 1.16300i 0.0395430i
866866 0 0
867867 0 0
868868 0 0
869869 7.57367i 0.256919i
870870 0 0
871871 43.0657 + 24.7847i 1.45923 + 0.839797i
872872 0 0
873873 0 0
874874 0 0
875875 −6.06884 −0.205164
876876 0 0
877877 6.74601i 0.227797i 0.993492 + 0.113898i 0.0363338π0.0363338\pi
−0.993492 + 0.113898i 0.963666π0.963666\pi
878878 0 0
879879 0 0
880880 0 0
881881 −22.5679 −0.760333 −0.380166 0.924918i 0.624133π-0.624133\pi
−0.380166 + 0.924918i 0.624133π0.624133\pi
882882 0 0
883883 −19.2628 −0.648245 −0.324122 0.946015i 0.605069π-0.605069\pi
−0.324122 + 0.946015i 0.605069π0.605069\pi
884884 0 0
885885 0 0
886886 0 0
887887 0.852658 0.0286295 0.0143147 0.999898i 0.495443π-0.495443\pi
0.0143147 + 0.999898i 0.495443π0.495443\pi
888888 0 0
889889 10.9331i 0.366685i
890890 0 0
891891 0 0
892892 0 0
893893 18.2483 0.610658
894894 0 0
895895 10.9361i 0.365555i
896896 0 0
897897 0 0
898898 0 0
899899 19.3295i 0.644674i
900900 0 0
901901 −8.19667 −0.273071
902902 0 0
903903 0 0
904904 0 0
905905 13.4088i 0.445725i
906906 0 0
907907 46.7594 1.55262 0.776310 0.630351i 0.217089π-0.217089\pi
0.776310 + 0.630351i 0.217089π0.217089\pi
908908 0 0
909909 0 0
910910 0 0
911911 33.7415 1.11791 0.558954 0.829199i 0.311203π-0.311203\pi
0.558954 + 0.829199i 0.311203π0.311203\pi
912912 0 0
913913 17.1731 0.568347
914914 0 0
915915 0 0
916916 0 0
917917 6.58725i 0.217530i
918918 0 0
919919 −23.4340 −0.773018 −0.386509 0.922286i 0.626319π-0.626319\pi
−0.386509 + 0.922286i 0.626319π0.626319\pi
920920 0 0
921921 0 0
922922 0 0
923923 −11.8885 6.84191i −0.391314 0.225204i
924924 0 0
925925 17.5754i 0.577876i
926926 0 0
927927 0 0
928928 0 0
929929 10.9826i 0.360328i 0.983637 + 0.180164i 0.0576629π0.0576629\pi
−0.983637 + 0.180164i 0.942337π0.942337\pi
930930 0 0
931931 2.53774i 0.0831709i
932932 0 0
933933 0 0
934934 0 0
935935 20.1076 0.657589
936936 0 0
937937 47.5028 1.55185 0.775924 0.630826i 0.217284π-0.217284\pi
0.775924 + 0.630826i 0.217284π0.217284\pi
938938 0 0
939939 0 0
940940 0 0
941941 8.08915i 0.263699i −0.991270 0.131849i 0.957908π-0.957908\pi
0.991270 0.131849i 0.0420915π-0.0420915\pi
942942 0 0
943943 3.79434i 0.123561i
944944 0 0
945945 0 0
946946 0 0
947947 18.7265i 0.608528i 0.952588 + 0.304264i 0.0984105π0.0984105\pi
−0.952588 + 0.304264i 0.901589π0.901589\pi
948948 0 0
949949 9.97121 + 5.73851i 0.323679 + 0.186280i
950950 0 0
951951 0 0
952952 0 0
953953 −47.2451 −1.53042 −0.765209 0.643781i 0.777365π-0.777365\pi
−0.765209 + 0.643781i 0.777365π0.777365\pi
954954 0 0
955955 24.1480i 0.781412i
956956 0 0
957957 0 0
958958 0 0
959959 −12.8333 −0.414409
960960 0 0
961961 16.6450 0.536936
962962 0 0
963963 0 0
964964 0 0
965965 68.4320 2.20290
966966 0 0
967967 39.7889i 1.27952i −0.768573 0.639762i 0.779033π-0.779033\pi
0.768573 0.639762i 0.220967π-0.220967\pi
968968 0 0
969969 0 0
970970 0 0
971971 −10.0133 −0.321341 −0.160670 0.987008i 0.551366π-0.551366\pi
−0.160670 + 0.987008i 0.551366π0.551366\pi
972972 0 0
973973 18.5998i 0.596281i
974974 0 0
975975 0 0
976976 0 0
977977 58.9087i 1.88466i −0.334691 0.942328i 0.608632π-0.608632\pi
0.334691 0.942328i 0.391368π-0.391368\pi
978978 0 0
979979 12.2879 0.392722
980980 0 0
981981 0 0
982982 0 0
983983 5.15605i 0.164452i −0.996614 0.0822262i 0.973797π-0.973797\pi
0.996614 0.0822262i 0.0262030π-0.0262030\pi
984984 0 0
985985 19.9846 0.636761
986986 0 0
987987 0 0
988988 0 0
989989 2.14931 0.0683442
990990 0 0
991991 −62.6905 −1.99143 −0.995715 0.0924728i 0.970523π-0.970523\pi
−0.995715 + 0.0924728i 0.970523π0.970523\pi
992992 0 0
993993 0 0
994994 0 0
995995 2.80640i 0.0889687i
996996 0 0
997997 −14.1377 −0.447745 −0.223872 0.974618i 0.571870π-0.571870\pi
−0.223872 + 0.974618i 0.571870π0.571870\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.e.f.2521.1 8
3.2 odd 2 364.2.g.a.337.4 yes 8
12.11 even 2 1456.2.k.d.337.6 8
13.12 even 2 inner 3276.2.e.f.2521.8 8
21.2 odd 6 2548.2.y.f.753.6 16
21.5 even 6 2548.2.y.e.753.3 16
21.11 odd 6 2548.2.y.f.961.5 16
21.17 even 6 2548.2.y.e.961.4 16
21.20 even 2 2548.2.g.g.2157.5 8
39.5 even 4 4732.2.a.p.1.2 4
39.8 even 4 4732.2.a.o.1.2 4
39.38 odd 2 364.2.g.a.337.3 8
156.155 even 2 1456.2.k.d.337.5 8
273.38 even 6 2548.2.y.e.961.3 16
273.116 odd 6 2548.2.y.f.961.6 16
273.194 even 6 2548.2.y.e.753.4 16
273.233 odd 6 2548.2.y.f.753.5 16
273.272 even 2 2548.2.g.g.2157.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.g.a.337.3 8 39.38 odd 2
364.2.g.a.337.4 yes 8 3.2 odd 2
1456.2.k.d.337.5 8 156.155 even 2
1456.2.k.d.337.6 8 12.11 even 2
2548.2.g.g.2157.5 8 21.20 even 2
2548.2.g.g.2157.6 8 273.272 even 2
2548.2.y.e.753.3 16 21.5 even 6
2548.2.y.e.753.4 16 273.194 even 6
2548.2.y.e.961.3 16 273.38 even 6
2548.2.y.e.961.4 16 21.17 even 6
2548.2.y.f.753.5 16 273.233 odd 6
2548.2.y.f.753.6 16 21.2 odd 6
2548.2.y.f.961.5 16 21.11 odd 6
2548.2.y.f.961.6 16 273.116 odd 6
3276.2.e.f.2521.1 8 1.1 even 1 trivial
3276.2.e.f.2521.8 8 13.12 even 2 inner
4732.2.a.o.1.2 4 39.8 even 4
4732.2.a.p.1.2 4 39.5 even 4