L(s) = 1 | − 0.257i·5-s − i·7-s − 4.19i·11-s + (0.742 − 3.52i)13-s − 7.46·17-s − 6.33i·19-s − 3.93·23-s + 4.93·25-s − 3.63·29-s + 8.55i·31-s − 0.257·35-s + 5.43i·37-s + 8.29i·41-s − 6.23·43-s + 9.91i·47-s + ⋯ |
L(s) = 1 | − 0.115i·5-s − 0.377i·7-s − 1.26i·11-s + (0.205 − 0.978i)13-s − 1.80·17-s − 1.45i·19-s − 0.820·23-s + 0.986·25-s − 0.674·29-s + 1.53i·31-s − 0.0435·35-s + 0.892i·37-s + 1.29i·41-s − 0.950·43-s + 1.44i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(−0.978−0.205i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(−0.978−0.205i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
−0.978−0.205i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(2521,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), −0.978−0.205i)
|
Particular Values
L(1) |
≈ |
0.4266792702 |
L(21) |
≈ |
0.4266792702 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+iT |
| 13 | 1+(−0.742+3.52i)T |
good | 5 | 1+0.257iT−5T2 |
| 11 | 1+4.19iT−11T2 |
| 17 | 1+7.46T+17T2 |
| 19 | 1+6.33iT−19T2 |
| 23 | 1+3.93T+23T2 |
| 29 | 1+3.63T+29T2 |
| 31 | 1−8.55iT−31T2 |
| 37 | 1−5.43iT−37T2 |
| 41 | 1−8.29iT−41T2 |
| 43 | 1+6.23T+43T2 |
| 47 | 1−9.91iT−47T2 |
| 53 | 1+1.63T+53T2 |
| 59 | 1−2.72iT−59T2 |
| 61 | 1+4.54T+61T2 |
| 67 | 1+5.84iT−67T2 |
| 71 | 1+2.05iT−71T2 |
| 73 | 1−13.9iT−73T2 |
| 79 | 1+0.0979T+79T2 |
| 83 | 1+10.3iT−83T2 |
| 89 | 1+4.60iT−89T2 |
| 97 | 1+10.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.513965979552877327849077797193, −7.51008144219460891398072993009, −6.63740739323350107229419175433, −6.14330176090052074560079530896, −5.04926989913477320103263758639, −4.49767788954929080250343359117, −3.32089168728891205471997290263, −2.72928974954659336799779295943, −1.28610722456293395051990019899, −0.12690236858152335507266055452,
1.91519043399298284939048364015, 2.20056182311185154659689413356, 3.78467211047888398190177503111, 4.28296241601645308377711384704, 5.21075288437793978838093397227, 6.14977817920149072800704397075, 6.78986228817700037702550278460, 7.47594763328134768990965321619, 8.357440473233158882143378668977, 9.092505845228372312571938449566