L(s) = 1 | − 0.257i·5-s − i·7-s − 4.19i·11-s + (0.742 − 3.52i)13-s − 7.46·17-s − 6.33i·19-s − 3.93·23-s + 4.93·25-s − 3.63·29-s + 8.55i·31-s − 0.257·35-s + 5.43i·37-s + 8.29i·41-s − 6.23·43-s + 9.91i·47-s + ⋯ |
L(s) = 1 | − 0.115i·5-s − 0.377i·7-s − 1.26i·11-s + (0.205 − 0.978i)13-s − 1.80·17-s − 1.45i·19-s − 0.820·23-s + 0.986·25-s − 0.674·29-s + 1.53i·31-s − 0.0435·35-s + 0.892i·37-s + 1.29i·41-s − 0.950·43-s + 1.44i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.205i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.978 - 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4266792702\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4266792702\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 + (-0.742 + 3.52i)T \) |
good | 5 | \( 1 + 0.257iT - 5T^{2} \) |
| 11 | \( 1 + 4.19iT - 11T^{2} \) |
| 17 | \( 1 + 7.46T + 17T^{2} \) |
| 19 | \( 1 + 6.33iT - 19T^{2} \) |
| 23 | \( 1 + 3.93T + 23T^{2} \) |
| 29 | \( 1 + 3.63T + 29T^{2} \) |
| 31 | \( 1 - 8.55iT - 31T^{2} \) |
| 37 | \( 1 - 5.43iT - 37T^{2} \) |
| 41 | \( 1 - 8.29iT - 41T^{2} \) |
| 43 | \( 1 + 6.23T + 43T^{2} \) |
| 47 | \( 1 - 9.91iT - 47T^{2} \) |
| 53 | \( 1 + 1.63T + 53T^{2} \) |
| 59 | \( 1 - 2.72iT - 59T^{2} \) |
| 61 | \( 1 + 4.54T + 61T^{2} \) |
| 67 | \( 1 + 5.84iT - 67T^{2} \) |
| 71 | \( 1 + 2.05iT - 71T^{2} \) |
| 73 | \( 1 - 13.9iT - 73T^{2} \) |
| 79 | \( 1 + 0.0979T + 79T^{2} \) |
| 83 | \( 1 + 10.3iT - 83T^{2} \) |
| 89 | \( 1 + 4.60iT - 89T^{2} \) |
| 97 | \( 1 + 10.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.513965979552877327849077797193, −7.51008144219460891398072993009, −6.63740739323350107229419175433, −6.14330176090052074560079530896, −5.04926989913477320103263758639, −4.49767788954929080250343359117, −3.32089168728891205471997290263, −2.72928974954659336799779295943, −1.28610722456293395051990019899, −0.12690236858152335507266055452,
1.91519043399298284939048364015, 2.20056182311185154659689413356, 3.78467211047888398190177503111, 4.28296241601645308377711384704, 5.21075288437793978838093397227, 6.14977817920149072800704397075, 6.78986228817700037702550278460, 7.47594763328134768990965321619, 8.357440473233158882143378668977, 9.092505845228372312571938449566