Properties

Label 2-3276-13.12-c1-0-35
Degree $2$
Conductor $3276$
Sign $-0.978 - 0.205i$
Analytic cond. $26.1589$
Root an. cond. $5.11458$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.257i·5-s i·7-s − 4.19i·11-s + (0.742 − 3.52i)13-s − 7.46·17-s − 6.33i·19-s − 3.93·23-s + 4.93·25-s − 3.63·29-s + 8.55i·31-s − 0.257·35-s + 5.43i·37-s + 8.29i·41-s − 6.23·43-s + 9.91i·47-s + ⋯
L(s)  = 1  − 0.115i·5-s − 0.377i·7-s − 1.26i·11-s + (0.205 − 0.978i)13-s − 1.80·17-s − 1.45i·19-s − 0.820·23-s + 0.986·25-s − 0.674·29-s + 1.53i·31-s − 0.0435·35-s + 0.892i·37-s + 1.29i·41-s − 0.950·43-s + 1.44i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 - 0.205i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.978 - 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3276\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-0.978 - 0.205i$
Analytic conductor: \(26.1589\)
Root analytic conductor: \(5.11458\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3276} (2521, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3276,\ (\ :1/2),\ -0.978 - 0.205i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4266792702\)
\(L(\frac12)\) \(\approx\) \(0.4266792702\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + iT \)
13 \( 1 + (-0.742 + 3.52i)T \)
good5 \( 1 + 0.257iT - 5T^{2} \)
11 \( 1 + 4.19iT - 11T^{2} \)
17 \( 1 + 7.46T + 17T^{2} \)
19 \( 1 + 6.33iT - 19T^{2} \)
23 \( 1 + 3.93T + 23T^{2} \)
29 \( 1 + 3.63T + 29T^{2} \)
31 \( 1 - 8.55iT - 31T^{2} \)
37 \( 1 - 5.43iT - 37T^{2} \)
41 \( 1 - 8.29iT - 41T^{2} \)
43 \( 1 + 6.23T + 43T^{2} \)
47 \( 1 - 9.91iT - 47T^{2} \)
53 \( 1 + 1.63T + 53T^{2} \)
59 \( 1 - 2.72iT - 59T^{2} \)
61 \( 1 + 4.54T + 61T^{2} \)
67 \( 1 + 5.84iT - 67T^{2} \)
71 \( 1 + 2.05iT - 71T^{2} \)
73 \( 1 - 13.9iT - 73T^{2} \)
79 \( 1 + 0.0979T + 79T^{2} \)
83 \( 1 + 10.3iT - 83T^{2} \)
89 \( 1 + 4.60iT - 89T^{2} \)
97 \( 1 + 10.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.513965979552877327849077797193, −7.51008144219460891398072993009, −6.63740739323350107229419175433, −6.14330176090052074560079530896, −5.04926989913477320103263758639, −4.49767788954929080250343359117, −3.32089168728891205471997290263, −2.72928974954659336799779295943, −1.28610722456293395051990019899, −0.12690236858152335507266055452, 1.91519043399298284939048364015, 2.20056182311185154659689413356, 3.78467211047888398190177503111, 4.28296241601645308377711384704, 5.21075288437793978838093397227, 6.14977817920149072800704397075, 6.78986228817700037702550278460, 7.47594763328134768990965321619, 8.357440473233158882143378668977, 9.092505845228372312571938449566

Graph of the $Z$-function along the critical line