L(s) = 1 | + (−2.5 + 0.866i)7-s + (−2.5 − 2.59i)13-s + (7.5 + 4.33i)19-s + (−2.5 − 4.33i)25-s + (−1.5 + 0.866i)31-s + (4.5 + 2.59i)37-s − 13·43-s + (5.5 − 4.33i)49-s + (7 − 12.1i)61-s + (13.5 − 7.79i)67-s + (−1.5 + 0.866i)73-s + (8.5 − 14.7i)79-s + (8.5 + 4.33i)91-s − 13.8i·97-s + (6.5 − 11.2i)103-s + ⋯ |
L(s) = 1 | + (−0.944 + 0.327i)7-s + (−0.693 − 0.720i)13-s + (1.72 + 0.993i)19-s + (−0.5 − 0.866i)25-s + (−0.269 + 0.155i)31-s + (0.739 + 0.427i)37-s − 1.98·43-s + (0.785 − 0.618i)49-s + (0.896 − 1.55i)61-s + (1.64 − 0.952i)67-s + (−0.175 + 0.101i)73-s + (0.956 − 1.65i)79-s + (0.891 + 0.453i)91-s − 1.40i·97-s + (0.640 − 1.10i)103-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.596+0.802i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.596+0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.596+0.802i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(2053,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.596+0.802i)
|
Particular Values
L(1) |
≈ |
1.271296442 |
L(21) |
≈ |
1.271296442 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.5−0.866i)T |
| 13 | 1+(2.5+2.59i)T |
good | 5 | 1+(2.5+4.33i)T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(−7.5−4.33i)T+(9.5+16.4i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+29T2 |
| 31 | 1+(1.5−0.866i)T+(15.5−26.8i)T2 |
| 37 | 1+(−4.5−2.59i)T+(18.5+32.0i)T2 |
| 41 | 1−41T2 |
| 43 | 1+13T+43T2 |
| 47 | 1+(23.5+40.7i)T2 |
| 53 | 1+(−26.5+45.8i)T2 |
| 59 | 1+(29.5−51.0i)T2 |
| 61 | 1+(−7+12.1i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−13.5+7.79i)T+(33.5−58.0i)T2 |
| 71 | 1−71T2 |
| 73 | 1+(1.5−0.866i)T+(36.5−63.2i)T2 |
| 79 | 1+(−8.5+14.7i)T+(−39.5−68.4i)T2 |
| 83 | 1−83T2 |
| 89 | 1+(44.5+77.0i)T2 |
| 97 | 1+13.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.408400968853407284542667633519, −7.84753506796081356110517177531, −7.03742142585836537349176230122, −6.24231906404629324340955335536, −5.53141501604077199854894710084, −4.81856231557847379849454396950, −3.55572941978070863045475152341, −3.07750612259779421629013139647, −1.94929097529683185927695874197, −0.48264857543684556610485166282,
0.923929624190572978977919317980, 2.30288426504281922957481550234, 3.22147637567794233208054067250, 3.97667235386509789704582611136, 5.00684708472396509681380948929, 5.65695020548949990029194413178, 6.77173014569794185282399290274, 7.09221912944065934057931731606, 7.88380380386551527209327020779, 8.931145556963242582831228659034