Properties

Label 3276.2.gv.a
Level 32763276
Weight 22
Character orbit 3276.gv
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1117,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1117");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.gv (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ63)q7+(3ζ61)q13+(5ζ6+5)q195ζ6q25+(ζ62)q31+(3ζ6+3)q3713q43+(5ζ6+8)q49+(14ζ6+14)q61++(16ζ6+8)q97+O(q100) q + (\zeta_{6} - 3) q^{7} + ( - 3 \zeta_{6} - 1) q^{13} + (5 \zeta_{6} + 5) q^{19} - 5 \zeta_{6} q^{25} + (\zeta_{6} - 2) q^{31} + (3 \zeta_{6} + 3) q^{37} - 13 q^{43} + ( - 5 \zeta_{6} + 8) q^{49} + ( - 14 \zeta_{6} + 14) q^{61} + \cdots + ( - 16 \zeta_{6} + 8) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q5q75q13+15q195q253q31+9q3726q43+11q49+14q61+27q673q73+17q79+17q91+O(q100) 2 q - 5 q^{7} - 5 q^{13} + 15 q^{19} - 5 q^{25} - 3 q^{31} + 9 q^{37} - 26 q^{43} + 11 q^{49} + 14 q^{61} + 27 q^{67} - 3 q^{73} + 17 q^{79} + 17 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3276Z)×\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times.

nn 16391639 20172017 23412341 25492549
χ(n)\chi(n) 11 1-1 1+ζ6-1 + \zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1117.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 −2.50000 0.866025i 0 0 0
2053.1 0 0 0 0 0 −2.50000 + 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
91.r even 6 1 inner
273.w odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.gv.a 2
3.b odd 2 1 CM 3276.2.gv.a 2
7.c even 3 1 3276.2.gv.b yes 2
13.b even 2 1 3276.2.gv.b yes 2
21.h odd 6 1 3276.2.gv.b yes 2
39.d odd 2 1 3276.2.gv.b yes 2
91.r even 6 1 inner 3276.2.gv.a 2
273.w odd 6 1 inner 3276.2.gv.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3276.2.gv.a 2 1.a even 1 1 trivial
3276.2.gv.a 2 3.b odd 2 1 CM
3276.2.gv.a 2 91.r even 6 1 inner
3276.2.gv.a 2 273.w odd 6 1 inner
3276.2.gv.b yes 2 7.c even 3 1
3276.2.gv.b yes 2 13.b even 2 1
3276.2.gv.b yes 2 21.h odd 6 1
3276.2.gv.b yes 2 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]):

T5 T_{5} Copy content Toggle raw display
T19215T19+75 T_{19}^{2} - 15T_{19} + 75 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+5T+7 T^{2} + 5T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+5T+13 T^{2} + 5T + 13 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
3737 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
6767 T227T+243 T^{2} - 27T + 243 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
7979 T217T+289 T^{2} - 17T + 289 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+192 T^{2} + 192 Copy content Toggle raw display
show more
show less