L(s) = 1 | + (−0.669 + 1.15i)2-s + (0.809 + 1.40i)3-s + (−0.395 − 0.684i)4-s − 2.16·6-s + (0.669 − 0.743i)7-s − 0.279·8-s + (−0.809 + 1.40i)9-s + (0.639 − 1.10i)12-s + (0.413 + 1.27i)14-s + (0.582 − 1.00i)16-s + (−0.913 − 1.58i)17-s + (−1.08 − 1.87i)18-s + (1.58 + 0.336i)21-s + (−0.226 − 0.392i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
L(s) = 1 | + (−0.669 + 1.15i)2-s + (0.809 + 1.40i)3-s + (−0.395 − 0.684i)4-s − 2.16·6-s + (0.669 − 0.743i)7-s − 0.279·8-s + (−0.809 + 1.40i)9-s + (0.639 − 1.10i)12-s + (0.413 + 1.27i)14-s + (0.582 − 1.00i)16-s + (−0.913 − 1.58i)17-s + (−1.08 − 1.87i)18-s + (1.58 + 0.336i)21-s + (−0.226 − 0.392i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 329 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.784 - 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 329 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.784 - 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7333855700\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7333855700\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.669 + 0.743i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 3 | \( 1 + (-0.809 - 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.913 + 1.58i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.913 - 1.58i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.978 - 1.69i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.669 + 1.15i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.82T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + 1.95T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91438539982107099670360261650, −10.87196333030955357408634184581, −9.948483395748035623363736136830, −9.236255472473650207245477498343, −8.449914372338562942614672988005, −7.67625808944133744472150545490, −6.65558505077137405488207586256, −5.13171704548076107549426400459, −4.31284991009843045661816457700, −2.90183104402826162231304474382,
1.68645756168233095062941011887, 2.26449363185006760463762289466, 3.64692453493006510428542000412, 5.71329851781330750415844131549, 6.85407118795595001850969981394, 8.125258701577221978287428657344, 8.588071381174095460277208669792, 9.409601448047303321602950053638, 10.72225150387065585578446362631, 11.47569131598313690268391917731