L(s) = 1 | − 3.53i·2-s − 1.73·3-s − 8.46·4-s + 6.19·5-s + 6.11i·6-s − 2.58i·7-s + 15.7i·8-s + 2.99·9-s − 21.8i·10-s + (6.73 − 8.69i)11-s + 14.6·12-s + 23.7i·13-s − 9.12·14-s − 10.7·15-s + 21.7·16-s + 12.2i·17-s + ⋯ |
L(s) = 1 | − 1.76i·2-s − 0.577·3-s − 2.11·4-s + 1.23·5-s + 1.01i·6-s − 0.369i·7-s + 1.97i·8-s + 0.333·9-s − 2.18i·10-s + (0.612 − 0.790i)11-s + 1.22·12-s + 1.82i·13-s − 0.651·14-s − 0.715·15-s + 1.36·16-s + 0.719i·17-s + ⋯ |
Λ(s)=(=(33s/2ΓC(s)L(s)(−0.612+0.790i)Λ(3−s)
Λ(s)=(=(33s/2ΓC(s+1)L(s)(−0.612+0.790i)Λ(1−s)
Degree: |
2 |
Conductor: |
33
= 3⋅11
|
Sign: |
−0.612+0.790i
|
Analytic conductor: |
0.899184 |
Root analytic conductor: |
0.948253 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ33(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 33, ( :1), −0.612+0.790i)
|
Particular Values
L(23) |
≈ |
0.404509−0.824515i |
L(21) |
≈ |
0.404509−0.824515i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+1.73T |
| 11 | 1+(−6.73+8.69i)T |
good | 2 | 1+3.53iT−4T2 |
| 5 | 1−6.19T+25T2 |
| 7 | 1+2.58iT−49T2 |
| 13 | 1−23.7iT−169T2 |
| 17 | 1−12.2iT−289T2 |
| 19 | 1−3.27iT−361T2 |
| 23 | 1+14.3T+529T2 |
| 29 | 1+38.5iT−841T2 |
| 31 | 1+11.1T+961T2 |
| 37 | 1+12.5T+1.36e3T2 |
| 41 | 1+1.38iT−1.68e3T2 |
| 43 | 1−23.9iT−1.84e3T2 |
| 47 | 1−19.8T+2.20e3T2 |
| 53 | 1+12.0T+2.80e3T2 |
| 59 | 1+62.7T+3.48e3T2 |
| 61 | 1+21.3iT−3.72e3T2 |
| 67 | 1+34T+4.48e3T2 |
| 71 | 1+69.2T+5.04e3T2 |
| 73 | 1+39.9iT−5.32e3T2 |
| 79 | 1−97.6iT−6.24e3T2 |
| 83 | 1+71.9iT−6.88e3T2 |
| 89 | 1−107.T+7.92e3T2 |
| 97 | 1+166.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.66089905828759549416081151807, −14.09977699405630018722588118712, −13.49955232345092999990011623682, −12.10798662709275078093249925492, −11.14299715677443179220938044031, −10.01851215469821635860244540049, −9.069322791113611605464269711606, −6.15012025980602209124338683622, −4.15979940465240215847716423614, −1.75980946077415687813493024952,
5.14629586213630255833811611530, 6.01785272799938372427563424404, 7.34390685369888332716055361569, 9.027180936759949181677452379217, 10.20382368798121601978165258507, 12.52807099055674813784751832003, 13.66903638690475769431315642723, 14.80850459626339352154425597640, 15.78602266977772422524583427412, 16.98468076297493011220349814447