Properties

Label 33.3.c.a
Level 3333
Weight 33
Character orbit 33.c
Analytic conductor 0.8990.899
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [33,3,Mod(10,33)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("33.10"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 33=311 33 = 3 \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 33.c (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8991848723890.899184872389
Analytic rank: 00
Dimension: 44
Coefficient field: 4.0.39744.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x3+12x2+4x+22 x^{4} - 2x^{3} + 12x^{2} + 4x + 22 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q2β1q3+(2β15)q4+(3β1+1)q5+(β3β2)q6+β2q7+(3β32β2)q8+3q9+(4β3+3β2)q10++(3β3+6β2++15)q99+O(q100) q - \beta_{3} q^{2} - \beta_1 q^{3} + ( - 2 \beta_1 - 5) q^{4} + (3 \beta_1 + 1) q^{5} + (\beta_{3} - \beta_{2}) q^{6} + \beta_{2} q^{7} + (3 \beta_{3} - 2 \beta_{2}) q^{8} + 3 q^{9} + ( - 4 \beta_{3} + 3 \beta_{2}) q^{10}+ \cdots + ( - 3 \beta_{3} + 6 \beta_{2} + \cdots + 15) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q20q4+4q5+12q9+20q11+24q12+12q1436q15+4q1692q2012q2292q23+12q25+204q26+80q3112q33+48q3460q36++60q99+O(q100) 4 q - 20 q^{4} + 4 q^{5} + 12 q^{9} + 20 q^{11} + 24 q^{12} + 12 q^{14} - 36 q^{15} + 4 q^{16} - 92 q^{20} - 12 q^{22} - 92 q^{23} + 12 q^{25} + 204 q^{26} + 80 q^{31} - 12 q^{33} + 48 q^{34} - 60 q^{36}+ \cdots + 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x3+12x2+4x+22 x^{4} - 2x^{3} + 12x^{2} + 4x + 22 : Copy content Toggle raw display

β1\beta_{1}== (ν3+ν2+2ν+23)/13 ( \nu^{3} + \nu^{2} + 2\nu + 23 ) / 13 Copy content Toggle raw display
β2\beta_{2}== (ν3+ν2+28ν+10)/13 ( \nu^{3} + \nu^{2} + 28\nu + 10 ) / 13 Copy content Toggle raw display
β3\beta_{3}== (3ν3+10ν232ν+9)/13 ( -3\nu^{3} + 10\nu^{2} - 32\nu + 9 ) / 13 Copy content Toggle raw display
ν\nu== (β2β1+1)/2 ( \beta_{2} - \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+2β15 \beta_{3} + \beta_{2} + 2\beta _1 - 5 Copy content Toggle raw display
ν3\nu^{3}== β32β2+12β119 -\beta_{3} - 2\beta_{2} + 12\beta _1 - 19 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/33Z)×\left(\mathbb{Z}/33\mathbb{Z}\right)^\times.

nn 1313 2323
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
10.1
−0.366025 1.29224i
1.36603 + 3.21405i
1.36603 3.21405i
−0.366025 + 1.29224i
3.53045i −1.73205 −8.46410 6.19615 6.11492i 2.58447i 15.7603i 3.00000 21.8752i
10.2 2.35285i 1.73205 −1.53590 −4.19615 4.07525i 6.42810i 5.79766i 3.00000 9.87291i
10.3 2.35285i 1.73205 −1.53590 −4.19615 4.07525i 6.42810i 5.79766i 3.00000 9.87291i
10.4 3.53045i −1.73205 −8.46410 6.19615 6.11492i 2.58447i 15.7603i 3.00000 21.8752i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.3.c.a 4
3.b odd 2 1 99.3.c.b 4
4.b odd 2 1 528.3.j.c 4
5.b even 2 1 825.3.b.a 4
5.c odd 4 2 825.3.h.a 8
8.b even 2 1 2112.3.j.a 4
8.d odd 2 1 2112.3.j.d 4
11.b odd 2 1 inner 33.3.c.a 4
11.c even 5 4 363.3.g.e 16
11.d odd 10 4 363.3.g.e 16
12.b even 2 1 1584.3.j.f 4
33.d even 2 1 99.3.c.b 4
44.c even 2 1 528.3.j.c 4
55.d odd 2 1 825.3.b.a 4
55.e even 4 2 825.3.h.a 8
88.b odd 2 1 2112.3.j.a 4
88.g even 2 1 2112.3.j.d 4
132.d odd 2 1 1584.3.j.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.3.c.a 4 1.a even 1 1 trivial
33.3.c.a 4 11.b odd 2 1 inner
99.3.c.b 4 3.b odd 2 1
99.3.c.b 4 33.d even 2 1
363.3.g.e 16 11.c even 5 4
363.3.g.e 16 11.d odd 10 4
528.3.j.c 4 4.b odd 2 1
528.3.j.c 4 44.c even 2 1
825.3.b.a 4 5.b even 2 1
825.3.b.a 4 55.d odd 2 1
825.3.h.a 8 5.c odd 4 2
825.3.h.a 8 55.e even 4 2
1584.3.j.f 4 12.b even 2 1
1584.3.j.f 4 132.d odd 2 1
2112.3.j.a 4 8.b even 2 1
2112.3.j.a 4 88.b odd 2 1
2112.3.j.d 4 8.d odd 2 1
2112.3.j.d 4 88.g even 2 1

Hecke kernels

This newform subspace is the entire newspace S3new(33,[χ])S_{3}^{\mathrm{new}}(33, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+18T2+69 T^{4} + 18T^{2} + 69 Copy content Toggle raw display
33 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
55 (T22T26)2 (T^{2} - 2 T - 26)^{2} Copy content Toggle raw display
77 T4+48T2+276 T^{4} + 48T^{2} + 276 Copy content Toggle raw display
1111 T420T3++14641 T^{4} - 20 T^{3} + \cdots + 14641 Copy content Toggle raw display
1313 T4+624T2+33396 T^{4} + 624 T^{2} + 33396 Copy content Toggle raw display
1717 T4+216T2+9936 T^{4} + 216T^{2} + 9936 Copy content Toggle raw display
1919 T4+936T2+9936 T^{4} + 936T^{2} + 9936 Copy content Toggle raw display
2323 (T2+46T+454)2 (T^{2} + 46 T + 454)^{2} Copy content Toggle raw display
2929 T4+1536T2+70656 T^{4} + 1536 T^{2} + 70656 Copy content Toggle raw display
3131 (T240T572)2 (T^{2} - 40 T - 572)^{2} Copy content Toggle raw display
3737 (T2+32T+244)2 (T^{2} + 32 T + 244)^{2} Copy content Toggle raw display
4141 T4+2304T2+4416 T^{4} + 2304 T^{2} + 4416 Copy content Toggle raw display
4343 T4+7272T2+3843024 T^{4} + 7272 T^{2} + 3843024 Copy content Toggle raw display
4747 (T250T+598)2 (T^{2} - 50 T + 598)^{2} Copy content Toggle raw display
5353 (T214T314)2 (T^{2} - 14 T - 314)^{2} Copy content Toggle raw display
5959 (T220T5192)2 (T^{2} - 20 T - 5192)^{2} Copy content Toggle raw display
6161 T4+6144T2+2596884 T^{4} + 6144 T^{2} + 2596884 Copy content Toggle raw display
6767 (T+34)4 (T + 34)^{4} Copy content Toggle raw display
7171 (T2+142T+5038)2 (T^{2} + 142 T + 5038)^{2} Copy content Toggle raw display
7373 T4+4608T2+4809024 T^{4} + 4608 T^{2} + 4809024 Copy content Toggle raw display
7979 T4+10128T2+5643924 T^{4} + 10128 T^{2} + 5643924 Copy content Toggle raw display
8383 T4+5184T2+4416 T^{4} + 5184 T^{2} + 4416 Copy content Toggle raw display
8989 (T2152T+4804)2 (T^{2} - 152 T + 4804)^{2} Copy content Toggle raw display
9797 (T2+188T+3544)2 (T^{2} + 188 T + 3544)^{2} Copy content Toggle raw display
show more
show less