gp: [N,k,chi] = [33,3,Mod(10,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.10");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 2 x 3 + 12 x 2 + 4 x + 22 x^{4} - 2x^{3} + 12x^{2} + 4x + 22 x 4 − 2 x 3 + 1 2 x 2 + 4 x + 2 2
x^4 - 2*x^3 + 12*x^2 + 4*x + 22
:
β 1 \beta_{1} β 1 = = =
( ν 3 + ν 2 + 2 ν + 23 ) / 13 ( \nu^{3} + \nu^{2} + 2\nu + 23 ) / 13 ( ν 3 + ν 2 + 2 ν + 2 3 ) / 1 3
(v^3 + v^2 + 2*v + 23) / 13
β 2 \beta_{2} β 2 = = =
( ν 3 + ν 2 + 28 ν + 10 ) / 13 ( \nu^{3} + \nu^{2} + 28\nu + 10 ) / 13 ( ν 3 + ν 2 + 2 8 ν + 1 0 ) / 1 3
(v^3 + v^2 + 28*v + 10) / 13
β 3 \beta_{3} β 3 = = =
( − 3 ν 3 + 10 ν 2 − 32 ν + 9 ) / 13 ( -3\nu^{3} + 10\nu^{2} - 32\nu + 9 ) / 13 ( − 3 ν 3 + 1 0 ν 2 − 3 2 ν + 9 ) / 1 3
(-3*v^3 + 10*v^2 - 32*v + 9) / 13
ν \nu ν = = =
( β 2 − β 1 + 1 ) / 2 ( \beta_{2} - \beta _1 + 1 ) / 2 ( β 2 − β 1 + 1 ) / 2
(b2 - b1 + 1) / 2
ν 2 \nu^{2} ν 2 = = =
β 3 + β 2 + 2 β 1 − 5 \beta_{3} + \beta_{2} + 2\beta _1 - 5 β 3 + β 2 + 2 β 1 − 5
b3 + b2 + 2*b1 - 5
ν 3 \nu^{3} ν 3 = = =
− β 3 − 2 β 2 + 12 β 1 − 19 -\beta_{3} - 2\beta_{2} + 12\beta _1 - 19 − β 3 − 2 β 2 + 1 2 β 1 − 1 9
-b3 - 2*b2 + 12*b1 - 19
Character values
We give the values of χ \chi χ on generators for ( Z / 33 Z ) × \left(\mathbb{Z}/33\mathbb{Z}\right)^\times ( Z / 3 3 Z ) × .
n n n
13 13 1 3
23 23 2 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 3 n e w ( 33 , [ χ ] ) S_{3}^{\mathrm{new}}(33, [\chi]) S 3 n e w ( 3 3 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 18 T 2 + 69 T^{4} + 18T^{2} + 69 T 4 + 1 8 T 2 + 6 9
T^4 + 18*T^2 + 69
3 3 3
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
5 5 5
( T 2 − 2 T − 26 ) 2 (T^{2} - 2 T - 26)^{2} ( T 2 − 2 T − 2 6 ) 2
(T^2 - 2*T - 26)^2
7 7 7
T 4 + 48 T 2 + 276 T^{4} + 48T^{2} + 276 T 4 + 4 8 T 2 + 2 7 6
T^4 + 48*T^2 + 276
11 11 1 1
T 4 − 20 T 3 + ⋯ + 14641 T^{4} - 20 T^{3} + \cdots + 14641 T 4 − 2 0 T 3 + ⋯ + 1 4 6 4 1
T^4 - 20*T^3 + 330*T^2 - 2420*T + 14641
13 13 1 3
T 4 + 624 T 2 + 33396 T^{4} + 624 T^{2} + 33396 T 4 + 6 2 4 T 2 + 3 3 3 9 6
T^4 + 624*T^2 + 33396
17 17 1 7
T 4 + 216 T 2 + 9936 T^{4} + 216T^{2} + 9936 T 4 + 2 1 6 T 2 + 9 9 3 6
T^4 + 216*T^2 + 9936
19 19 1 9
T 4 + 936 T 2 + 9936 T^{4} + 936T^{2} + 9936 T 4 + 9 3 6 T 2 + 9 9 3 6
T^4 + 936*T^2 + 9936
23 23 2 3
( T 2 + 46 T + 454 ) 2 (T^{2} + 46 T + 454)^{2} ( T 2 + 4 6 T + 4 5 4 ) 2
(T^2 + 46*T + 454)^2
29 29 2 9
T 4 + 1536 T 2 + 70656 T^{4} + 1536 T^{2} + 70656 T 4 + 1 5 3 6 T 2 + 7 0 6 5 6
T^4 + 1536*T^2 + 70656
31 31 3 1
( T 2 − 40 T − 572 ) 2 (T^{2} - 40 T - 572)^{2} ( T 2 − 4 0 T − 5 7 2 ) 2
(T^2 - 40*T - 572)^2
37 37 3 7
( T 2 + 32 T + 244 ) 2 (T^{2} + 32 T + 244)^{2} ( T 2 + 3 2 T + 2 4 4 ) 2
(T^2 + 32*T + 244)^2
41 41 4 1
T 4 + 2304 T 2 + 4416 T^{4} + 2304 T^{2} + 4416 T 4 + 2 3 0 4 T 2 + 4 4 1 6
T^4 + 2304*T^2 + 4416
43 43 4 3
T 4 + 7272 T 2 + 3843024 T^{4} + 7272 T^{2} + 3843024 T 4 + 7 2 7 2 T 2 + 3 8 4 3 0 2 4
T^4 + 7272*T^2 + 3843024
47 47 4 7
( T 2 − 50 T + 598 ) 2 (T^{2} - 50 T + 598)^{2} ( T 2 − 5 0 T + 5 9 8 ) 2
(T^2 - 50*T + 598)^2
53 53 5 3
( T 2 − 14 T − 314 ) 2 (T^{2} - 14 T - 314)^{2} ( T 2 − 1 4 T − 3 1 4 ) 2
(T^2 - 14*T - 314)^2
59 59 5 9
( T 2 − 20 T − 5192 ) 2 (T^{2} - 20 T - 5192)^{2} ( T 2 − 2 0 T − 5 1 9 2 ) 2
(T^2 - 20*T - 5192)^2
61 61 6 1
T 4 + 6144 T 2 + 2596884 T^{4} + 6144 T^{2} + 2596884 T 4 + 6 1 4 4 T 2 + 2 5 9 6 8 8 4
T^4 + 6144*T^2 + 2596884
67 67 6 7
( T + 34 ) 4 (T + 34)^{4} ( T + 3 4 ) 4
(T + 34)^4
71 71 7 1
( T 2 + 142 T + 5038 ) 2 (T^{2} + 142 T + 5038)^{2} ( T 2 + 1 4 2 T + 5 0 3 8 ) 2
(T^2 + 142*T + 5038)^2
73 73 7 3
T 4 + 4608 T 2 + 4809024 T^{4} + 4608 T^{2} + 4809024 T 4 + 4 6 0 8 T 2 + 4 8 0 9 0 2 4
T^4 + 4608*T^2 + 4809024
79 79 7 9
T 4 + 10128 T 2 + 5643924 T^{4} + 10128 T^{2} + 5643924 T 4 + 1 0 1 2 8 T 2 + 5 6 4 3 9 2 4
T^4 + 10128*T^2 + 5643924
83 83 8 3
T 4 + 5184 T 2 + 4416 T^{4} + 5184 T^{2} + 4416 T 4 + 5 1 8 4 T 2 + 4 4 1 6
T^4 + 5184*T^2 + 4416
89 89 8 9
( T 2 − 152 T + 4804 ) 2 (T^{2} - 152 T + 4804)^{2} ( T 2 − 1 5 2 T + 4 8 0 4 ) 2
(T^2 - 152*T + 4804)^2
97 97 9 7
( T 2 + 188 T + 3544 ) 2 (T^{2} + 188 T + 3544)^{2} ( T 2 + 1 8 8 T + 3 5 4 4 ) 2
(T^2 + 188*T + 3544)^2
show more
show less