L(s) = 1 | + (0.366 − 0.366i)5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.866 − 0.5i)17-s + 0.732i·25-s + (−1.5 − 0.866i)29-s + (−1.86 + 0.5i)37-s + (1.86 − 0.5i)41-s + (−0.5 − 0.133i)45-s + (−0.866 − 0.5i)49-s − i·53-s + (0.866 − 0.5i)61-s + (−0.133 − 0.5i)65-s + (1.36 − 1.36i)73-s + (−0.499 + 0.866i)81-s + ⋯ |
L(s) = 1 | + (0.366 − 0.366i)5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.866 − 0.5i)17-s + 0.732i·25-s + (−1.5 − 0.866i)29-s + (−1.86 + 0.5i)37-s + (1.86 − 0.5i)41-s + (−0.5 − 0.133i)45-s + (−0.866 − 0.5i)49-s − i·53-s + (0.866 − 0.5i)61-s + (−0.133 − 0.5i)65-s + (1.36 − 1.36i)73-s + (−0.499 + 0.866i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.283 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.283 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.240797971\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.240797971\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-1.86 + 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.711398981065079343866128561323, −7.960162431337252185807076849113, −7.22285804697962889266174896650, −6.26485077718987502282258671847, −5.60157827307155737785397712986, −5.07650242769767254976628759390, −3.72048342350847623366817525846, −3.27027318632784256529949984770, −2.00359710738641751222314370834, −0.76009050882679437910665504439,
1.55275188061677362922692401739, 2.41165000993393497668636566278, 3.43123527672051933819983800130, 4.28604815814138452805054339504, 5.33594934651065302878081337204, 5.87089796064282651685902778272, 6.71650543991791644208186699983, 7.50150163613653361597015490515, 8.204138262500032275404458138142, 8.967290125692116922375920852404