L(s) = 1 | + (0.366 − 0.366i)5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.866 − 0.5i)17-s + 0.732i·25-s + (−1.5 − 0.866i)29-s + (−1.86 + 0.5i)37-s + (1.86 − 0.5i)41-s + (−0.5 − 0.133i)45-s + (−0.866 − 0.5i)49-s − i·53-s + (0.866 − 0.5i)61-s + (−0.133 − 0.5i)65-s + (1.36 − 1.36i)73-s + (−0.499 + 0.866i)81-s + ⋯ |
L(s) = 1 | + (0.366 − 0.366i)5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.866 − 0.5i)17-s + 0.732i·25-s + (−1.5 − 0.866i)29-s + (−1.86 + 0.5i)37-s + (1.86 − 0.5i)41-s + (−0.5 − 0.133i)45-s + (−0.866 − 0.5i)49-s − i·53-s + (0.866 − 0.5i)61-s + (−0.133 − 0.5i)65-s + (1.36 − 1.36i)73-s + (−0.499 + 0.866i)81-s + ⋯ |
Λ(s)=(=(3328s/2ΓC(s)L(s)(0.283+0.958i)Λ(1−s)
Λ(s)=(=(3328s/2ΓC(s)L(s)(0.283+0.958i)Λ(1−s)
Degree: |
2 |
Conductor: |
3328
= 28⋅13
|
Sign: |
0.283+0.958i
|
Analytic conductor: |
1.66088 |
Root analytic conductor: |
1.28875 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3328(2945,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3328, ( :0), 0.283+0.958i)
|
Particular Values
L(21) |
≈ |
1.240797971 |
L(21) |
≈ |
1.240797971 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−0.5+0.866i)T |
good | 3 | 1+(0.5+0.866i)T2 |
| 5 | 1+(−0.366+0.366i)T−iT2 |
| 7 | 1+(0.866+0.5i)T2 |
| 11 | 1+(0.866−0.5i)T2 |
| 17 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 19 | 1+(0.866+0.5i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 31 | 1+iT2 |
| 37 | 1+(1.86−0.5i)T+(0.866−0.5i)T2 |
| 41 | 1+(−1.86+0.5i)T+(0.866−0.5i)T2 |
| 43 | 1+(−0.5+0.866i)T2 |
| 47 | 1−iT2 |
| 53 | 1+iT−T2 |
| 59 | 1+(−0.866−0.5i)T2 |
| 61 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 67 | 1+(−0.866+0.5i)T2 |
| 71 | 1+(−0.866−0.5i)T2 |
| 73 | 1+(−1.36+1.36i)T−iT2 |
| 79 | 1+T2 |
| 83 | 1−iT2 |
| 89 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 97 | 1+(−0.366+1.36i)T+(−0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.711398981065079343866128561323, −7.960162431337252185807076849113, −7.22285804697962889266174896650, −6.26485077718987502282258671847, −5.60157827307155737785397712986, −5.07650242769767254976628759390, −3.72048342350847623366817525846, −3.27027318632784256529949984770, −2.00359710738641751222314370834, −0.76009050882679437910665504439,
1.55275188061677362922692401739, 2.41165000993393497668636566278, 3.43123527672051933819983800130, 4.28604815814138452805054339504, 5.33594934651065302878081337204, 5.87089796064282651685902778272, 6.71650543991791644208186699983, 7.50150163613653361597015490515, 8.204138262500032275404458138142, 8.967290125692116922375920852404