Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3328,1,Mod(2177,3328)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 6, 5]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3328.2177");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3328.bv (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 416) |
Projective image: | |
Projective field: | Galois closure of 12.0.469804094334435328.7 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2177.1 |
|
0 | 0 | 0 | −1.36603 | − | 1.36603i | 0 | 0 | 0 | −0.500000 | − | 0.866025i | 0 | ||||||||||||||||||||||||||
2433.1 | 0 | 0 | 0 | 0.366025 | + | 0.366025i | 0 | 0 | 0 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||
2689.1 | 0 | 0 | 0 | −1.36603 | + | 1.36603i | 0 | 0 | 0 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||
2945.1 | 0 | 0 | 0 | 0.366025 | − | 0.366025i | 0 | 0 | 0 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
104.u | even | 12 | 1 | inner |
104.x | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3328.1.bv.a | 4 | |
4.b | odd | 2 | 1 | CM | 3328.1.bv.a | 4 | |
8.b | even | 2 | 1 | 3328.1.bv.b | 4 | ||
8.d | odd | 2 | 1 | 3328.1.bv.b | 4 | ||
13.f | odd | 12 | 1 | 3328.1.bv.b | 4 | ||
16.e | even | 4 | 1 | 416.1.bl.a | ✓ | 4 | |
16.e | even | 4 | 1 | 832.1.bl.a | 4 | ||
16.f | odd | 4 | 1 | 416.1.bl.a | ✓ | 4 | |
16.f | odd | 4 | 1 | 832.1.bl.a | 4 | ||
48.i | odd | 4 | 1 | 3744.1.gs.c | 4 | ||
48.k | even | 4 | 1 | 3744.1.gs.c | 4 | ||
52.l | even | 12 | 1 | 3328.1.bv.b | 4 | ||
104.u | even | 12 | 1 | inner | 3328.1.bv.a | 4 | |
104.x | odd | 12 | 1 | inner | 3328.1.bv.a | 4 | |
208.be | odd | 12 | 1 | 832.1.bl.a | 4 | ||
208.bf | even | 12 | 1 | 832.1.bl.a | 4 | ||
208.bk | even | 12 | 1 | 416.1.bl.a | ✓ | 4 | |
208.bl | odd | 12 | 1 | 416.1.bl.a | ✓ | 4 | |
624.ce | even | 12 | 1 | 3744.1.gs.c | 4 | ||
624.cg | odd | 12 | 1 | 3744.1.gs.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.1.bl.a | ✓ | 4 | 16.e | even | 4 | 1 | |
416.1.bl.a | ✓ | 4 | 16.f | odd | 4 | 1 | |
416.1.bl.a | ✓ | 4 | 208.bk | even | 12 | 1 | |
416.1.bl.a | ✓ | 4 | 208.bl | odd | 12 | 1 | |
832.1.bl.a | 4 | 16.e | even | 4 | 1 | ||
832.1.bl.a | 4 | 16.f | odd | 4 | 1 | ||
832.1.bl.a | 4 | 208.be | odd | 12 | 1 | ||
832.1.bl.a | 4 | 208.bf | even | 12 | 1 | ||
3328.1.bv.a | 4 | 1.a | even | 1 | 1 | trivial | |
3328.1.bv.a | 4 | 4.b | odd | 2 | 1 | CM | |
3328.1.bv.a | 4 | 104.u | even | 12 | 1 | inner | |
3328.1.bv.a | 4 | 104.x | odd | 12 | 1 | inner | |
3328.1.bv.b | 4 | 8.b | even | 2 | 1 | ||
3328.1.bv.b | 4 | 8.d | odd | 2 | 1 | ||
3328.1.bv.b | 4 | 13.f | odd | 12 | 1 | ||
3328.1.bv.b | 4 | 52.l | even | 12 | 1 | ||
3744.1.gs.c | 4 | 48.i | odd | 4 | 1 | ||
3744.1.gs.c | 4 | 48.k | even | 4 | 1 | ||
3744.1.gs.c | 4 | 624.ce | even | 12 | 1 | ||
3744.1.gs.c | 4 | 624.cg | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .