Properties

Label 3328.1.bv.a
Level $3328$
Weight $1$
Character orbit 3328.bv
Analytic conductor $1.661$
Analytic rank $0$
Dimension $4$
Projective image $D_{12}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,1,Mod(2177,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.2177");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3328.bv (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Projective image: \(D_{12}\)
Projective field: Galois closure of 12.0.469804094334435328.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{2} + \zeta_{12}) q^{5} - \zeta_{12}^{2} q^{9} - \zeta_{12}^{4} q^{13} - \zeta_{12}^{5} q^{17} + (\zeta_{12}^{4} + \cdots + \zeta_{12}^{2}) q^{25} + ( - \zeta_{12}^{2} - 1) q^{29} + (\zeta_{12}^{5} - 1) q^{37} + \cdots + ( - \zeta_{12}^{5} - \zeta_{12}^{2}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 2 q^{9} + 2 q^{13} - 6 q^{29} - 4 q^{37} + 4 q^{41} - 2 q^{45} - 4 q^{65} + 2 q^{73} - 2 q^{81} + 4 q^{85} - 2 q^{89} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2177.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 0 0 −1.36603 1.36603i 0 0 0 −0.500000 0.866025i 0
2433.1 0 0 0 0.366025 + 0.366025i 0 0 0 −0.500000 + 0.866025i 0
2689.1 0 0 0 −1.36603 + 1.36603i 0 0 0 −0.500000 + 0.866025i 0
2945.1 0 0 0 0.366025 0.366025i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
104.u even 12 1 inner
104.x odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.1.bv.a 4
4.b odd 2 1 CM 3328.1.bv.a 4
8.b even 2 1 3328.1.bv.b 4
8.d odd 2 1 3328.1.bv.b 4
13.f odd 12 1 3328.1.bv.b 4
16.e even 4 1 416.1.bl.a 4
16.e even 4 1 832.1.bl.a 4
16.f odd 4 1 416.1.bl.a 4
16.f odd 4 1 832.1.bl.a 4
48.i odd 4 1 3744.1.gs.c 4
48.k even 4 1 3744.1.gs.c 4
52.l even 12 1 3328.1.bv.b 4
104.u even 12 1 inner 3328.1.bv.a 4
104.x odd 12 1 inner 3328.1.bv.a 4
208.be odd 12 1 832.1.bl.a 4
208.bf even 12 1 832.1.bl.a 4
208.bk even 12 1 416.1.bl.a 4
208.bl odd 12 1 416.1.bl.a 4
624.ce even 12 1 3744.1.gs.c 4
624.cg odd 12 1 3744.1.gs.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.1.bl.a 4 16.e even 4 1
416.1.bl.a 4 16.f odd 4 1
416.1.bl.a 4 208.bk even 12 1
416.1.bl.a 4 208.bl odd 12 1
832.1.bl.a 4 16.e even 4 1
832.1.bl.a 4 16.f odd 4 1
832.1.bl.a 4 208.be odd 12 1
832.1.bl.a 4 208.bf even 12 1
3328.1.bv.a 4 1.a even 1 1 trivial
3328.1.bv.a 4 4.b odd 2 1 CM
3328.1.bv.a 4 104.u even 12 1 inner
3328.1.bv.a 4 104.x odd 12 1 inner
3328.1.bv.b 4 8.b even 2 1
3328.1.bv.b 4 8.d odd 2 1
3328.1.bv.b 4 13.f odd 12 1
3328.1.bv.b 4 52.l even 12 1
3744.1.gs.c 4 48.i odd 4 1
3744.1.gs.c 4 48.k even 4 1
3744.1.gs.c 4 624.ce even 12 1
3744.1.gs.c 4 624.cg odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 2T_{5}^{3} + 2T_{5}^{2} - 2T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(3328, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$97$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
show more
show less