Properties

Label 3328.1.bv.a
Level 33283328
Weight 11
Character orbit 3328.bv
Analytic conductor 1.6611.661
Analytic rank 00
Dimension 44
Projective image D12D_{12}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,1,Mod(2177,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.2177");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3328=2813 3328 = 2^{8} \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3328.bv (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.660888362041.66088836204
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 416)
Projective image: D12D_{12}
Projective field: Galois closure of 12.0.469804094334435328.7

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ122+ζ12)q5ζ122q9ζ124q13ζ125q17+(ζ124++ζ122)q25+(ζ1221)q29+(ζ1251)q37++(ζ125ζ122)q97+O(q100) q + ( - \zeta_{12}^{2} + \zeta_{12}) q^{5} - \zeta_{12}^{2} q^{9} - \zeta_{12}^{4} q^{13} - \zeta_{12}^{5} q^{17} + (\zeta_{12}^{4} + \cdots + \zeta_{12}^{2}) q^{25} + ( - \zeta_{12}^{2} - 1) q^{29} + (\zeta_{12}^{5} - 1) q^{37} + \cdots + ( - \zeta_{12}^{5} - \zeta_{12}^{2}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q52q9+2q136q294q37+4q412q454q65+2q732q81+4q852q892q97+O(q100) 4 q - 2 q^{5} - 2 q^{9} + 2 q^{13} - 6 q^{29} - 4 q^{37} + 4 q^{41} - 2 q^{45} - 4 q^{65} + 2 q^{73} - 2 q^{81} + 4 q^{85} - 2 q^{89} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3328Z)×\left(\mathbb{Z}/3328\mathbb{Z}\right)^\times.

nn 261261 769769 15351535
χ(n)\chi(n) 1-1 ζ125-\zeta_{12}^{5} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2177.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 0 0 −1.36603 1.36603i 0 0 0 −0.500000 0.866025i 0
2433.1 0 0 0 0.366025 + 0.366025i 0 0 0 −0.500000 + 0.866025i 0
2689.1 0 0 0 −1.36603 + 1.36603i 0 0 0 −0.500000 + 0.866025i 0
2945.1 0 0 0 0.366025 0.366025i 0 0 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
104.u even 12 1 inner
104.x odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3328.1.bv.a 4
4.b odd 2 1 CM 3328.1.bv.a 4
8.b even 2 1 3328.1.bv.b 4
8.d odd 2 1 3328.1.bv.b 4
13.f odd 12 1 3328.1.bv.b 4
16.e even 4 1 416.1.bl.a 4
16.e even 4 1 832.1.bl.a 4
16.f odd 4 1 416.1.bl.a 4
16.f odd 4 1 832.1.bl.a 4
48.i odd 4 1 3744.1.gs.c 4
48.k even 4 1 3744.1.gs.c 4
52.l even 12 1 3328.1.bv.b 4
104.u even 12 1 inner 3328.1.bv.a 4
104.x odd 12 1 inner 3328.1.bv.a 4
208.be odd 12 1 832.1.bl.a 4
208.bf even 12 1 832.1.bl.a 4
208.bk even 12 1 416.1.bl.a 4
208.bl odd 12 1 416.1.bl.a 4
624.ce even 12 1 3744.1.gs.c 4
624.cg odd 12 1 3744.1.gs.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.1.bl.a 4 16.e even 4 1
416.1.bl.a 4 16.f odd 4 1
416.1.bl.a 4 208.bk even 12 1
416.1.bl.a 4 208.bl odd 12 1
832.1.bl.a 4 16.e even 4 1
832.1.bl.a 4 16.f odd 4 1
832.1.bl.a 4 208.be odd 12 1
832.1.bl.a 4 208.bf even 12 1
3328.1.bv.a 4 1.a even 1 1 trivial
3328.1.bv.a 4 4.b odd 2 1 CM
3328.1.bv.a 4 104.u even 12 1 inner
3328.1.bv.a 4 104.x odd 12 1 inner
3328.1.bv.b 4 8.b even 2 1
3328.1.bv.b 4 8.d odd 2 1
3328.1.bv.b 4 13.f odd 12 1
3328.1.bv.b 4 52.l even 12 1
3744.1.gs.c 4 48.i odd 4 1
3744.1.gs.c 4 48.k even 4 1
3744.1.gs.c 4 624.ce even 12 1
3744.1.gs.c 4 624.cg odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+2T53+2T522T5+1 T_{5}^{4} + 2T_{5}^{3} + 2T_{5}^{2} - 2T_{5} + 1 acting on S1new(3328,[χ])S_{1}^{\mathrm{new}}(3328, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1717 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4+4T3++1 T^{4} + 4 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
9797 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
show more
show less