L(s) = 1 | + (−0.222 + 0.974i)2-s + (0.777 − 0.974i)3-s + (−0.900 − 0.433i)4-s + (0.777 + 0.974i)6-s + (0.623 − 0.781i)7-s + (0.623 − 0.781i)8-s + (−0.123 − 0.541i)9-s + (0.0990 − 0.433i)11-s + (−1.12 + 0.541i)12-s + (0.0990 − 0.433i)13-s + (0.623 + 0.781i)14-s + (0.623 + 0.781i)16-s + (−0.900 + 0.433i)17-s + 0.554·18-s + (−0.277 − 1.21i)21-s + (0.400 + 0.193i)22-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (0.777 − 0.974i)3-s + (−0.900 − 0.433i)4-s + (0.777 + 0.974i)6-s + (0.623 − 0.781i)7-s + (0.623 − 0.781i)8-s + (−0.123 − 0.541i)9-s + (0.0990 − 0.433i)11-s + (−1.12 + 0.541i)12-s + (0.0990 − 0.433i)13-s + (0.623 + 0.781i)14-s + (0.623 + 0.781i)16-s + (−0.900 + 0.433i)17-s + 0.554·18-s + (−0.277 − 1.21i)21-s + (0.400 + 0.193i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.801+0.598i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.801+0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.801+0.598i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.801+0.598i)
|
Particular Values
L(21) |
≈ |
1.415068823 |
L(21) |
≈ |
1.415068823 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.222−0.974i)T |
| 7 | 1+(−0.623+0.781i)T |
| 17 | 1+(0.900−0.433i)T |
good | 3 | 1+(−0.777+0.974i)T+(−0.222−0.974i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 11 | 1+(−0.0990+0.433i)T+(−0.900−0.433i)T2 |
| 13 | 1+(−0.0990+0.433i)T+(−0.900−0.433i)T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.400−0.193i)T+(0.623+0.781i)T2 |
| 29 | 1+(−0.623+0.781i)T2 |
| 31 | 1−1.24T+T2 |
| 37 | 1+(−0.623+0.781i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(0.900+0.433i)T2 |
| 53 | 1+(1.12+0.541i)T+(0.623+0.781i)T2 |
| 59 | 1+(0.222−0.974i)T2 |
| 61 | 1+(−0.623+0.781i)T2 |
| 67 | 1−T2 |
| 71 | 1+(1.12+0.541i)T+(0.623+0.781i)T2 |
| 73 | 1+(0.900−0.433i)T2 |
| 79 | 1+0.445T+T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(0.277+1.21i)T+(−0.900+0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.396255741131433372408236078824, −8.011981819867755251076319122526, −7.35896781344060731639351647068, −6.66054513027771580912661659015, −6.06284910266007748167306223539, −4.91679078249261271172406145374, −4.25594542847401194036956686213, −3.16864521892414047524088377917, −1.92063486695949818513799242389, −0.906870331352341292476389969740,
1.56155869353784588912339738545, 2.54178433631714906095271459887, 3.16384483852969260352581428576, 4.28736852378233598901268534655, 4.59501675266173305164309397265, 5.49912617461983661980282345266, 6.74578121952291483845094408159, 7.80405078711136000542316992611, 8.520954206152058642092261634863, 9.068828447965179267013278841147