L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.0999 − 0.758i)5-s + (0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.0999 − 0.758i)10-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)17-s + (−0.499 − 0.866i)18-s + (−0.292 − 0.707i)20-s + (0.400 + 0.107i)25-s + (0.707 − 0.292i)29-s + (0.258 − 0.965i)32-s + i·34-s + (−0.707 − 0.707i)36-s + (−0.758 − 0.0999i)37-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.0999 − 0.758i)5-s + (0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.0999 − 0.758i)10-s + (0.500 − 0.866i)16-s + (−0.258 + 0.965i)17-s + (−0.499 − 0.866i)18-s + (−0.292 − 0.707i)20-s + (0.400 + 0.107i)25-s + (0.707 − 0.292i)29-s + (0.258 − 0.965i)32-s + i·34-s + (−0.707 − 0.707i)36-s + (−0.758 − 0.0999i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.123 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.123 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.340239883\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.340239883\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.258 - 0.965i)T \) |
good | 3 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 5 | \( 1 + (-0.0999 + 0.758i)T + (-0.965 - 0.258i)T^{2} \) |
| 11 | \( 1 + (-0.965 + 0.258i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.258 - 0.965i)T^{2} \) |
| 29 | \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 37 | \( 1 + (0.758 + 0.0999i)T + (0.965 + 0.258i)T^{2} \) |
| 41 | \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-1.46 + 1.12i)T + (0.258 - 0.965i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.607 + 0.465i)T + (0.258 + 0.965i)T^{2} \) |
| 79 | \( 1 + (0.258 - 0.965i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.718121995825093886757082408793, −7.88705168490309106426204937911, −6.78410677624725477064403623972, −6.34171621573562970195706942602, −5.46044152287244802555162706659, −4.81926753746392091228970635769, −3.91812786811348459960255313787, −3.28046304674850454497978475998, −2.11276847089133480192130302580, −1.05740136694526897986230506952,
1.86137447689934077097655311697, 2.76597752983309755168459772768, 3.34899124692051940482125257461, 4.56424734493325392479743343890, 5.09451813857499216911187577111, 5.89533588073568944849463367848, 6.92324425209449342205079439440, 7.05828617196057181011390131756, 8.147375211143371882560108155336, 8.664523605165466202877320599531