Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3332,1,Mod(263,3332)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3332, base_ring=CyclotomicField(24))
chi = DirichletCharacter(H, H._module([12, 16, 15]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3332.263");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3332.bp (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 8.2.3089659810545728.4 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
263.1 |
|
0.965926 | + | 0.258819i | 0 | 0.866025 | + | 0.500000i | 0.0999004 | + | 0.758819i | 0 | 0 | 0.707107 | + | 0.707107i | −0.258819 | + | 0.965926i | −0.0999004 | + | 0.758819i | ||||||||||||||||||||||||||||||
655.1 | −0.965926 | − | 0.258819i | 0 | 0.866025 | + | 0.500000i | −1.83195 | + | 0.241181i | 0 | 0 | −0.707107 | − | 0.707107i | 0.258819 | − | 0.965926i | 1.83195 | + | 0.241181i | |||||||||||||||||||||||||||||||
1243.1 | 0.258819 | − | 0.965926i | 0 | −0.866025 | − | 0.500000i | 1.12484 | − | 1.46593i | 0 | 0 | −0.707107 | + | 0.707107i | −0.965926 | − | 0.258819i | −1.12484 | − | 1.46593i | |||||||||||||||||||||||||||||||
1647.1 | 0.965926 | − | 0.258819i | 0 | 0.866025 | − | 0.500000i | 0.0999004 | − | 0.758819i | 0 | 0 | 0.707107 | − | 0.707107i | −0.258819 | − | 0.965926i | −0.0999004 | − | 0.758819i | |||||||||||||||||||||||||||||||
2235.1 | −0.258819 | − | 0.965926i | 0 | −0.866025 | + | 0.500000i | 0.607206 | − | 0.465926i | 0 | 0 | 0.707107 | + | 0.707107i | 0.965926 | − | 0.258819i | −0.607206 | − | 0.465926i | |||||||||||||||||||||||||||||||
2627.1 | 0.258819 | + | 0.965926i | 0 | −0.866025 | + | 0.500000i | 1.12484 | + | 1.46593i | 0 | 0 | −0.707107 | − | 0.707107i | −0.965926 | + | 0.258819i | −1.12484 | + | 1.46593i | |||||||||||||||||||||||||||||||
3007.1 | −0.258819 | + | 0.965926i | 0 | −0.866025 | − | 0.500000i | 0.607206 | + | 0.465926i | 0 | 0 | 0.707107 | − | 0.707107i | 0.965926 | + | 0.258819i | −0.607206 | + | 0.465926i | |||||||||||||||||||||||||||||||
3215.1 | −0.965926 | + | 0.258819i | 0 | 0.866025 | − | 0.500000i | −1.83195 | − | 0.241181i | 0 | 0 | −0.707107 | + | 0.707107i | 0.258819 | + | 0.965926i | 1.83195 | − | 0.241181i | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by |
7.c | even | 3 | 1 | inner |
17.d | even | 8 | 1 | inner |
28.g | odd | 6 | 1 | inner |
68.g | odd | 8 | 1 | inner |
119.q | even | 24 | 1 | inner |
476.bg | odd | 24 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3332.1.bp.b | 8 | |
4.b | odd | 2 | 1 | CM | 3332.1.bp.b | 8 | |
7.b | odd | 2 | 1 | 3332.1.bp.c | 8 | ||
7.c | even | 3 | 1 | 3332.1.w.b | ✓ | 4 | |
7.c | even | 3 | 1 | inner | 3332.1.bp.b | 8 | |
7.d | odd | 6 | 1 | 3332.1.w.c | yes | 4 | |
7.d | odd | 6 | 1 | 3332.1.bp.c | 8 | ||
17.d | even | 8 | 1 | inner | 3332.1.bp.b | 8 | |
28.d | even | 2 | 1 | 3332.1.bp.c | 8 | ||
28.f | even | 6 | 1 | 3332.1.w.c | yes | 4 | |
28.f | even | 6 | 1 | 3332.1.bp.c | 8 | ||
28.g | odd | 6 | 1 | 3332.1.w.b | ✓ | 4 | |
28.g | odd | 6 | 1 | inner | 3332.1.bp.b | 8 | |
68.g | odd | 8 | 1 | inner | 3332.1.bp.b | 8 | |
119.l | odd | 8 | 1 | 3332.1.bp.c | 8 | ||
119.q | even | 24 | 1 | 3332.1.w.b | ✓ | 4 | |
119.q | even | 24 | 1 | inner | 3332.1.bp.b | 8 | |
119.r | odd | 24 | 1 | 3332.1.w.c | yes | 4 | |
119.r | odd | 24 | 1 | 3332.1.bp.c | 8 | ||
476.w | even | 8 | 1 | 3332.1.bp.c | 8 | ||
476.bg | odd | 24 | 1 | 3332.1.w.b | ✓ | 4 | |
476.bg | odd | 24 | 1 | inner | 3332.1.bp.b | 8 | |
476.bj | even | 24 | 1 | 3332.1.w.c | yes | 4 | |
476.bj | even | 24 | 1 | 3332.1.bp.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3332.1.w.b | ✓ | 4 | 7.c | even | 3 | 1 | |
3332.1.w.b | ✓ | 4 | 28.g | odd | 6 | 1 | |
3332.1.w.b | ✓ | 4 | 119.q | even | 24 | 1 | |
3332.1.w.b | ✓ | 4 | 476.bg | odd | 24 | 1 | |
3332.1.w.c | yes | 4 | 7.d | odd | 6 | 1 | |
3332.1.w.c | yes | 4 | 28.f | even | 6 | 1 | |
3332.1.w.c | yes | 4 | 119.r | odd | 24 | 1 | |
3332.1.w.c | yes | 4 | 476.bj | even | 24 | 1 | |
3332.1.bp.b | 8 | 1.a | even | 1 | 1 | trivial | |
3332.1.bp.b | 8 | 4.b | odd | 2 | 1 | CM | |
3332.1.bp.b | 8 | 7.c | even | 3 | 1 | inner | |
3332.1.bp.b | 8 | 17.d | even | 8 | 1 | inner | |
3332.1.bp.b | 8 | 28.g | odd | 6 | 1 | inner | |
3332.1.bp.b | 8 | 68.g | odd | 8 | 1 | inner | |
3332.1.bp.b | 8 | 119.q | even | 24 | 1 | inner | |
3332.1.bp.b | 8 | 476.bg | odd | 24 | 1 | inner | |
3332.1.bp.c | 8 | 7.b | odd | 2 | 1 | ||
3332.1.bp.c | 8 | 7.d | odd | 6 | 1 | ||
3332.1.bp.c | 8 | 28.d | even | 2 | 1 | ||
3332.1.bp.c | 8 | 28.f | even | 6 | 1 | ||
3332.1.bp.c | 8 | 119.l | odd | 8 | 1 | ||
3332.1.bp.c | 8 | 119.r | odd | 24 | 1 | ||
3332.1.bp.c | 8 | 476.w | even | 8 | 1 | ||
3332.1.bp.c | 8 | 476.bj | even | 24 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .