Properties

Label 3332.1.bp.b
Level 33323332
Weight 11
Character orbit 3332.bp
Analytic conductor 1.6631.663
Analytic rank 00
Dimension 88
Projective image D8D_{8}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(263,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(24))
 
chi = DirichletCharacter(H, H._module([12, 16, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.263");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3332=227217 3332 = 2^{2} \cdot 7^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3332.bp (of order 2424, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.662884622091.66288462209
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D8D_{8}
Projective field: Galois closure of 8.2.3089659810545728.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ247q2ζ242q4+(ζ2410ζ247)q5+ζ249q8ζ24q9+(ζ245ζ242)q10+ζ244q16++(ζ246+ζ243)q97+O(q100) q - \zeta_{24}^{7} q^{2} - \zeta_{24}^{2} q^{4} + ( - \zeta_{24}^{10} - \zeta_{24}^{7}) q^{5} + \zeta_{24}^{9} q^{8} - \zeta_{24} q^{9} + ( - \zeta_{24}^{5} - \zeta_{24}^{2}) q^{10} + \zeta_{24}^{4} q^{16} + \cdots + (\zeta_{24}^{6} + \zeta_{24}^{3}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q164q188q20+4q254q37+4q408q414q458q50+4q53+4q614q74+O(q100) 8 q + 4 q^{16} - 4 q^{18} - 8 q^{20} + 4 q^{25} - 4 q^{37} + 4 q^{40} - 8 q^{41} - 4 q^{45} - 8 q^{50} + 4 q^{53} + 4 q^{61} - 4 q^{74}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3332Z)×\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times.

nn 785785 885885 16671667
χ(n)\chi(n) ζ249-\zeta_{24}^{9} ζ244-\zeta_{24}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
263.1
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.965926 0.258819i
−0.258819 0.965926i
0.965926 + 0.258819i 0 0.866025 + 0.500000i 0.0999004 + 0.758819i 0 0 0.707107 + 0.707107i −0.258819 + 0.965926i −0.0999004 + 0.758819i
655.1 −0.965926 0.258819i 0 0.866025 + 0.500000i −1.83195 + 0.241181i 0 0 −0.707107 0.707107i 0.258819 0.965926i 1.83195 + 0.241181i
1243.1 0.258819 0.965926i 0 −0.866025 0.500000i 1.12484 1.46593i 0 0 −0.707107 + 0.707107i −0.965926 0.258819i −1.12484 1.46593i
1647.1 0.965926 0.258819i 0 0.866025 0.500000i 0.0999004 0.758819i 0 0 0.707107 0.707107i −0.258819 0.965926i −0.0999004 0.758819i
2235.1 −0.258819 0.965926i 0 −0.866025 + 0.500000i 0.607206 0.465926i 0 0 0.707107 + 0.707107i 0.965926 0.258819i −0.607206 0.465926i
2627.1 0.258819 + 0.965926i 0 −0.866025 + 0.500000i 1.12484 + 1.46593i 0 0 −0.707107 0.707107i −0.965926 + 0.258819i −1.12484 + 1.46593i
3007.1 −0.258819 + 0.965926i 0 −0.866025 0.500000i 0.607206 + 0.465926i 0 0 0.707107 0.707107i 0.965926 + 0.258819i −0.607206 + 0.465926i
3215.1 −0.965926 + 0.258819i 0 0.866025 0.500000i −1.83195 0.241181i 0 0 −0.707107 + 0.707107i 0.258819 + 0.965926i 1.83195 0.241181i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 263.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
7.c even 3 1 inner
17.d even 8 1 inner
28.g odd 6 1 inner
68.g odd 8 1 inner
119.q even 24 1 inner
476.bg odd 24 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3332.1.bp.b 8
4.b odd 2 1 CM 3332.1.bp.b 8
7.b odd 2 1 3332.1.bp.c 8
7.c even 3 1 3332.1.w.b 4
7.c even 3 1 inner 3332.1.bp.b 8
7.d odd 6 1 3332.1.w.c yes 4
7.d odd 6 1 3332.1.bp.c 8
17.d even 8 1 inner 3332.1.bp.b 8
28.d even 2 1 3332.1.bp.c 8
28.f even 6 1 3332.1.w.c yes 4
28.f even 6 1 3332.1.bp.c 8
28.g odd 6 1 3332.1.w.b 4
28.g odd 6 1 inner 3332.1.bp.b 8
68.g odd 8 1 inner 3332.1.bp.b 8
119.l odd 8 1 3332.1.bp.c 8
119.q even 24 1 3332.1.w.b 4
119.q even 24 1 inner 3332.1.bp.b 8
119.r odd 24 1 3332.1.w.c yes 4
119.r odd 24 1 3332.1.bp.c 8
476.w even 8 1 3332.1.bp.c 8
476.bg odd 24 1 3332.1.w.b 4
476.bg odd 24 1 inner 3332.1.bp.b 8
476.bj even 24 1 3332.1.w.c yes 4
476.bj even 24 1 3332.1.bp.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3332.1.w.b 4 7.c even 3 1
3332.1.w.b 4 28.g odd 6 1
3332.1.w.b 4 119.q even 24 1
3332.1.w.b 4 476.bg odd 24 1
3332.1.w.c yes 4 7.d odd 6 1
3332.1.w.c yes 4 28.f even 6 1
3332.1.w.c yes 4 119.r odd 24 1
3332.1.w.c yes 4 476.bj even 24 1
3332.1.bp.b 8 1.a even 1 1 trivial
3332.1.bp.b 8 4.b odd 2 1 CM
3332.1.bp.b 8 7.c even 3 1 inner
3332.1.bp.b 8 17.d even 8 1 inner
3332.1.bp.b 8 28.g odd 6 1 inner
3332.1.bp.b 8 68.g odd 8 1 inner
3332.1.bp.b 8 119.q even 24 1 inner
3332.1.bp.b 8 476.bg odd 24 1 inner
3332.1.bp.c 8 7.b odd 2 1
3332.1.bp.c 8 7.d odd 6 1
3332.1.bp.c 8 28.d even 2 1
3332.1.bp.c 8 28.f even 6 1
3332.1.bp.c 8 119.l odd 8 1
3332.1.bp.c 8 119.r odd 24 1
3332.1.bp.c 8 476.w even 8 1
3332.1.bp.c 8 476.bj even 24 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T582T56+8T55+2T548T53+12T528T5+4 T_{5}^{8} - 2T_{5}^{6} + 8T_{5}^{5} + 2T_{5}^{4} - 8T_{5}^{3} + 12T_{5}^{2} - 8T_{5} + 4 acting on S1new(3332,[χ])S_{1}^{\mathrm{new}}(3332, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T82T6++4 T^{8} - 2 T^{6} + \cdots + 4 Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 (T4+2T24T+2)2 (T^{4} + 2 T^{2} - 4 T + 2)^{2} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8+4T7++4 T^{8} + 4 T^{7} + \cdots + 4 Copy content Toggle raw display
4141 (T4+4T3+6T2++2)2 (T^{4} + 4 T^{3} + 6 T^{2} + \cdots + 2)^{2} Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 (T42T3+2T2++4)2 (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 T84T7++4 T^{8} - 4 T^{7} + \cdots + 4 Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T82T6++4 T^{8} - 2 T^{6} + \cdots + 4 Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 (T44T2+16)2 (T^{4} - 4 T^{2} + 16)^{2} Copy content Toggle raw display
9797 (T4+2T2+4T+2)2 (T^{4} + 2 T^{2} + 4 T + 2)^{2} Copy content Toggle raw display
show more
show less