L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (−1.83 − 0.241i)5-s + (−0.707 + 0.707i)8-s + (0.258 + 0.965i)9-s + (1.83 − 0.241i)10-s + (0.500 − 0.866i)16-s + (0.258 − 0.965i)17-s + (−0.499 − 0.866i)18-s + (−1.70 + 0.707i)20-s + (2.33 + 0.624i)25-s + (−0.707 − 1.70i)29-s + (−0.258 + 0.965i)32-s + i·34-s + (0.707 + 0.707i)36-s + (−0.241 + 1.83i)37-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (−1.83 − 0.241i)5-s + (−0.707 + 0.707i)8-s + (0.258 + 0.965i)9-s + (1.83 − 0.241i)10-s + (0.500 − 0.866i)16-s + (0.258 − 0.965i)17-s + (−0.499 − 0.866i)18-s + (−1.70 + 0.707i)20-s + (2.33 + 0.624i)25-s + (−0.707 − 1.70i)29-s + (−0.258 + 0.965i)32-s + i·34-s + (0.707 + 0.707i)36-s + (−0.241 + 1.83i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.142−0.989i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.142−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.142−0.989i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(3215,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.142−0.989i)
|
Particular Values
L(21) |
≈ |
0.3780176981 |
L(21) |
≈ |
0.3780176981 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 7 | 1 |
| 17 | 1+(−0.258+0.965i)T |
good | 3 | 1+(−0.258−0.965i)T2 |
| 5 | 1+(1.83+0.241i)T+(0.965+0.258i)T2 |
| 11 | 1+(0.965−0.258i)T2 |
| 13 | 1−T2 |
| 19 | 1+(−0.866+0.5i)T2 |
| 23 | 1+(−0.258+0.965i)T2 |
| 29 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 31 | 1+(−0.258−0.965i)T2 |
| 37 | 1+(0.241−1.83i)T+(−0.965−0.258i)T2 |
| 41 | 1+(0.292−0.707i)T+(−0.707−0.707i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.5−0.866i)T2 |
| 53 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 59 | 1+(−0.866−0.5i)T2 |
| 61 | 1+(0.465+0.607i)T+(−0.258+0.965i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(−0.707+0.707i)T2 |
| 73 | 1+(1.12−1.46i)T+(−0.258−0.965i)T2 |
| 79 | 1+(−0.258+0.965i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 97 | 1+(−0.707−1.70i)T+(−0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.820326321199279934147053790763, −8.017007572449845541935661207879, −7.77028542320002903380815931567, −7.16674662065826267922854708039, −6.27069439053920585203027812680, −5.09621884885345239523807194106, −4.51682642026728674104845192389, −3.41771687755488308128885370052, −2.46550938726616524475874508777, −1.05328748996031345716370664575,
0.38077843168179938311252986372, 1.72835739662762071265245408365, 3.30949861999462570812819989718, 3.53494915371445483046303017657, 4.42053803996716639669785761405, 5.80542508151205201063954352372, 6.78069591179218972629712007319, 7.30860066372174603237912866283, 7.82761073893858858827806033756, 8.807915988141060156976729614634