L(s) = 1 | + (−0.733 + 0.680i)2-s + (−1.95 + 0.294i)3-s + (0.0747 − 0.997i)4-s + (1.23 − 1.54i)6-s + (−0.623 − 0.781i)7-s + (0.623 + 0.781i)8-s + (2.78 − 0.858i)9-s + (1.40 + 0.432i)11-s + (0.147 + 1.97i)12-s + (0.326 + 1.42i)13-s + (0.988 + 0.149i)14-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−1.45 + 2.52i)18-s + (1.44 + 1.34i)21-s + (−1.32 + 0.636i)22-s + ⋯ |
L(s) = 1 | + (−0.733 + 0.680i)2-s + (−1.95 + 0.294i)3-s + (0.0747 − 0.997i)4-s + (1.23 − 1.54i)6-s + (−0.623 − 0.781i)7-s + (0.623 + 0.781i)8-s + (2.78 − 0.858i)9-s + (1.40 + 0.432i)11-s + (0.147 + 1.97i)12-s + (0.326 + 1.42i)13-s + (0.988 + 0.149i)14-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−1.45 + 2.52i)18-s + (1.44 + 1.34i)21-s + (−1.32 + 0.636i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4641942365\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4641942365\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.733 - 0.680i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 17 | \( 1 + (-0.826 + 0.563i)T \) |
good | 3 | \( 1 + (1.95 - 0.294i)T + (0.955 - 0.294i)T^{2} \) |
| 5 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 11 | \( 1 + (-1.40 - 0.432i)T + (0.826 + 0.563i)T^{2} \) |
| 13 | \( 1 + (-0.326 - 1.42i)T + (-0.900 + 0.433i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.367 - 0.250i)T + (0.365 + 0.930i)T^{2} \) |
| 29 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + (-0.623 + 1.07i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 53 | \( 1 + (-0.0546 + 0.728i)T + (-0.988 - 0.149i)T^{2} \) |
| 59 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 61 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.658 + 0.317i)T + (0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 79 | \( 1 + (-0.955 - 1.65i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (1.88 - 0.582i)T + (0.826 - 0.563i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.403144709646873711179553590623, −7.88530610717769833815063100538, −6.91469218898131130872438132909, −6.73875827950699445831054433318, −6.13041764339548806753547886704, −5.32717648968936041525154498722, −4.33538850906902059121965065723, −3.99000630031905019050538199583, −1.65034884004911691028303235707, −0.77137282632510650982950752861,
0.818350586665259534052658915550, 1.62410113246871487747156719430, 3.15589635607176664912106698953, 3.95951744439753687877254712444, 5.10467121986436347322614752860, 5.89348802290983894058662377324, 6.37093856353873985133058203286, 7.15152875641628122625259451384, 7.986653938622868339030153352379, 8.868130492899343896910964316653