L(s) = 1 | + (−0.733 + 0.680i)2-s + (−1.95 + 0.294i)3-s + (0.0747 − 0.997i)4-s + (1.23 − 1.54i)6-s + (−0.623 − 0.781i)7-s + (0.623 + 0.781i)8-s + (2.78 − 0.858i)9-s + (1.40 + 0.432i)11-s + (0.147 + 1.97i)12-s + (0.326 + 1.42i)13-s + (0.988 + 0.149i)14-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−1.45 + 2.52i)18-s + (1.44 + 1.34i)21-s + (−1.32 + 0.636i)22-s + ⋯ |
L(s) = 1 | + (−0.733 + 0.680i)2-s + (−1.95 + 0.294i)3-s + (0.0747 − 0.997i)4-s + (1.23 − 1.54i)6-s + (−0.623 − 0.781i)7-s + (0.623 + 0.781i)8-s + (2.78 − 0.858i)9-s + (1.40 + 0.432i)11-s + (0.147 + 1.97i)12-s + (0.326 + 1.42i)13-s + (0.988 + 0.149i)14-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−1.45 + 2.52i)18-s + (1.44 + 1.34i)21-s + (−1.32 + 0.636i)22-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.801−0.598i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.801−0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.801−0.598i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1971,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.801−0.598i)
|
Particular Values
L(21) |
≈ |
0.4641942365 |
L(21) |
≈ |
0.4641942365 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.733−0.680i)T |
| 7 | 1+(0.623+0.781i)T |
| 17 | 1+(−0.826+0.563i)T |
good | 3 | 1+(1.95−0.294i)T+(0.955−0.294i)T2 |
| 5 | 1+(0.733+0.680i)T2 |
| 11 | 1+(−1.40−0.432i)T+(0.826+0.563i)T2 |
| 13 | 1+(−0.326−1.42i)T+(−0.900+0.433i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.367−0.250i)T+(0.365+0.930i)T2 |
| 29 | 1+(−0.623−0.781i)T2 |
| 31 | 1+(−0.623+1.07i)T+(−0.5−0.866i)T2 |
| 37 | 1+(0.988−0.149i)T2 |
| 41 | 1+(0.222−0.974i)T2 |
| 43 | 1+(0.222+0.974i)T2 |
| 47 | 1+(−0.0747+0.997i)T2 |
| 53 | 1+(−0.0546+0.728i)T+(−0.988−0.149i)T2 |
| 59 | 1+(0.733−0.680i)T2 |
| 61 | 1+(0.988−0.149i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−0.658+0.317i)T+(0.623−0.781i)T2 |
| 73 | 1+(−0.0747−0.997i)T2 |
| 79 | 1+(−0.955−1.65i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(1.88−0.582i)T+(0.826−0.563i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.403144709646873711179553590623, −7.88530610717769833815063100538, −6.91469218898131130872438132909, −6.73875827950699445831054433318, −6.13041764339548806753547886704, −5.32717648968936041525154498722, −4.33538850906902059121965065723, −3.99000630031905019050538199583, −1.65034884004911691028303235707, −0.77137282632510650982950752861,
0.818350586665259534052658915550, 1.62410113246871487747156719430, 3.15589635607176664912106698953, 3.95951744439753687877254712444, 5.10467121986436347322614752860, 5.89348802290983894058662377324, 6.37093856353873985133058203286, 7.15152875641628122625259451384, 7.986653938622868339030153352379, 8.868130492899343896910964316653