Properties

Label 3332.1.cc.a.1971.1
Level $3332$
Weight $1$
Character 3332.1971
Analytic conductor $1.663$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -68
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3332,1,Mod(135,3332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 32, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3332.135");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3332 = 2^{2} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3332.cc (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66288462209\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} + \cdots)\)

Embedding invariants

Embedding label 1971.1
Root \(0.826239 - 0.563320i\) of defining polynomial
Character \(\chi\) \(=\) 3332.1971
Dual form 3332.1.cc.a.1087.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.733052 + 0.680173i) q^{2} +(-1.95557 + 0.294755i) q^{3} +(0.0747301 - 0.997204i) q^{4} +(1.23305 - 1.54620i) q^{6} +(-0.623490 - 0.781831i) q^{7} +(0.623490 + 0.781831i) q^{8} +(2.78181 - 0.858075i) q^{9} +(1.40097 + 0.432142i) q^{11} +(0.147791 + 1.97213i) q^{12} +(0.326239 + 1.42935i) q^{13} +(0.988831 + 0.149042i) q^{14} +(-0.988831 - 0.149042i) q^{16} +(0.826239 - 0.563320i) q^{17} +(-1.45557 + 2.52113i) q^{18} +(1.44973 + 1.34515i) q^{21} +(-1.32091 + 0.636119i) q^{22} +(0.367711 + 0.250701i) q^{23} +(-1.44973 - 1.34515i) q^{24} +(-0.733052 - 0.680173i) q^{25} +(-1.21135 - 0.825886i) q^{26} +(-3.40530 + 1.63991i) q^{27} +(-0.826239 + 0.563320i) q^{28} +(0.623490 - 1.07992i) q^{31} +(0.826239 - 0.563320i) q^{32} +(-2.86707 - 0.432142i) q^{33} +(-0.222521 + 0.974928i) q^{34} +(-0.647791 - 2.83816i) q^{36} +(-1.05929 - 2.69903i) q^{39} -1.97766 q^{42} +(0.535628 - 1.36476i) q^{44} +(-0.440071 + 0.0663300i) q^{46} +1.97766 q^{48} +(-0.222521 + 0.974928i) q^{49} +1.00000 q^{50} +(-1.44973 + 1.34515i) q^{51} +(1.44973 - 0.218511i) q^{52} +(0.0546039 - 0.728639i) q^{53} +(1.38084 - 3.51833i) q^{54} +(0.222521 - 0.974928i) q^{56} +(0.277479 + 1.21572i) q^{62} +(-2.40530 - 1.63991i) q^{63} +(-0.222521 + 0.974928i) q^{64} +(2.39564 - 1.63332i) q^{66} +(-0.500000 - 0.866025i) q^{68} +(-0.792981 - 0.381879i) q^{69} +(0.658322 - 0.317031i) q^{71} +(2.40530 + 1.63991i) q^{72} +(1.63402 + 1.11406i) q^{75} +(-0.535628 - 1.36476i) q^{77} +(2.61232 + 1.25803i) q^{78} +(0.955573 + 1.65510i) q^{79} +(3.77064 - 2.57078i) q^{81} +(1.44973 - 1.34515i) q^{84} +(0.535628 + 1.36476i) q^{88} +(-1.88980 + 0.582926i) q^{89} +(0.914101 - 1.14625i) q^{91} +(0.277479 - 0.347948i) q^{92} +(-0.900969 + 2.29563i) q^{93} +(-1.44973 + 1.34515i) q^{96} +(-0.500000 - 0.866025i) q^{98} +4.26804 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - 13 q^{3} + q^{4} + 5 q^{6} + 2 q^{7} - 2 q^{8} + 14 q^{9} + 8 q^{11} + q^{12} - 5 q^{13} - q^{14} + q^{16} + q^{17} - 7 q^{18} - q^{21} - 2 q^{22} - 2 q^{23} + q^{24} + q^{25} - q^{26}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3332\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(885\) \(1667\)
\(\chi(n)\) \(-1\) \(e\left(\frac{20}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(3\) −1.95557 + 0.294755i −1.95557 + 0.294755i −0.955573 + 0.294755i \(0.904762\pi\)
−1.00000 \(1.00000\pi\)
\(4\) 0.0747301 0.997204i 0.0747301 0.997204i
\(5\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(6\) 1.23305 1.54620i 1.23305 1.54620i
\(7\) −0.623490 0.781831i −0.623490 0.781831i
\(8\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(9\) 2.78181 0.858075i 2.78181 0.858075i
\(10\) 0 0
\(11\) 1.40097 + 0.432142i 1.40097 + 0.432142i 0.900969 0.433884i \(-0.142857\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0.147791 + 1.97213i 0.147791 + 1.97213i
\(13\) 0.326239 + 1.42935i 0.326239 + 1.42935i 0.826239 + 0.563320i \(0.190476\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(15\) 0 0
\(16\) −0.988831 0.149042i −0.988831 0.149042i
\(17\) 0.826239 0.563320i 0.826239 0.563320i
\(18\) −1.45557 + 2.52113i −1.45557 + 2.52113i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) 1.44973 + 1.34515i 1.44973 + 1.34515i
\(22\) −1.32091 + 0.636119i −1.32091 + 0.636119i
\(23\) 0.367711 + 0.250701i 0.367711 + 0.250701i 0.733052 0.680173i \(-0.238095\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(24\) −1.44973 1.34515i −1.44973 1.34515i
\(25\) −0.733052 0.680173i −0.733052 0.680173i
\(26\) −1.21135 0.825886i −1.21135 0.825886i
\(27\) −3.40530 + 1.63991i −3.40530 + 1.63991i
\(28\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(29\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(30\) 0 0
\(31\) 0.623490 1.07992i 0.623490 1.07992i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(32\) 0.826239 0.563320i 0.826239 0.563320i
\(33\) −2.86707 0.432142i −2.86707 0.432142i
\(34\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(35\) 0 0
\(36\) −0.647791 2.83816i −0.647791 2.83816i
\(37\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(38\) 0 0
\(39\) −1.05929 2.69903i −1.05929 2.69903i
\(40\) 0 0
\(41\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(42\) −1.97766 −1.97766
\(43\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(44\) 0.535628 1.36476i 0.535628 1.36476i
\(45\) 0 0
\(46\) −0.440071 + 0.0663300i −0.440071 + 0.0663300i
\(47\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(48\) 1.97766 1.97766
\(49\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(50\) 1.00000 1.00000
\(51\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(52\) 1.44973 0.218511i 1.44973 0.218511i
\(53\) 0.0546039 0.728639i 0.0546039 0.728639i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(54\) 1.38084 3.51833i 1.38084 3.51833i
\(55\) 0 0
\(56\) 0.222521 0.974928i 0.222521 0.974928i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(60\) 0 0
\(61\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(62\) 0.277479 + 1.21572i 0.277479 + 1.21572i
\(63\) −2.40530 1.63991i −2.40530 1.63991i
\(64\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(65\) 0 0
\(66\) 2.39564 1.63332i 2.39564 1.63332i
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −0.500000 0.866025i −0.500000 0.866025i
\(69\) −0.792981 0.381879i −0.792981 0.381879i
\(70\) 0 0
\(71\) 0.658322 0.317031i 0.658322 0.317031i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(72\) 2.40530 + 1.63991i 2.40530 + 1.63991i
\(73\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(74\) 0 0
\(75\) 1.63402 + 1.11406i 1.63402 + 1.11406i
\(76\) 0 0
\(77\) −0.535628 1.36476i −0.535628 1.36476i
\(78\) 2.61232 + 1.25803i 2.61232 + 1.25803i
\(79\) 0.955573 + 1.65510i 0.955573 + 1.65510i 0.733052 + 0.680173i \(0.238095\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(80\) 0 0
\(81\) 3.77064 2.57078i 3.77064 2.57078i
\(82\) 0 0
\(83\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(84\) 1.44973 1.34515i 1.44973 1.34515i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.535628 + 1.36476i 0.535628 + 1.36476i
\(89\) −1.88980 + 0.582926i −1.88980 + 0.582926i −0.900969 + 0.433884i \(0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(90\) 0 0
\(91\) 0.914101 1.14625i 0.914101 1.14625i
\(92\) 0.277479 0.347948i 0.277479 0.347948i
\(93\) −0.900969 + 2.29563i −0.900969 + 2.29563i
\(94\) 0 0
\(95\) 0 0
\(96\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 4.26804 4.26804
\(100\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(101\) 0.440071 0.0663300i 0.440071 0.0663300i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(102\) 0.147791 1.97213i 0.147791 1.97213i
\(103\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(104\) −0.914101 + 1.14625i −0.914101 + 1.14625i
\(105\) 0 0
\(106\) 0.455573 + 0.571270i 0.455573 + 0.571270i
\(107\) −0.142820 + 0.0440542i −0.142820 + 0.0440542i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(108\) 1.38084 + 3.51833i 1.38084 + 3.51833i
\(109\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.13402 + 3.69623i 2.13402 + 3.69623i
\(118\) 0 0
\(119\) −0.955573 0.294755i −0.955573 0.294755i
\(120\) 0 0
\(121\) 0.949729 + 0.647514i 0.949729 + 0.647514i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.03030 0.702449i −1.03030 0.702449i
\(125\) 0 0
\(126\) 2.87863 0.433884i 2.87863 0.433884i
\(127\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(128\) −0.500000 0.866025i −0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.440071 0.0663300i −0.440071 0.0663300i −0.0747301 0.997204i \(-0.523810\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(132\) −0.645190 + 2.82676i −0.645190 + 2.82676i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(137\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(138\) 0.841040 0.259426i 0.841040 0.259426i
\(139\) −1.19158 1.49419i −1.19158 1.49419i −0.826239 0.563320i \(-0.809524\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.266948 + 0.680173i −0.266948 + 0.680173i
\(143\) −0.160629 + 2.14345i −0.160629 + 2.14345i
\(144\) −2.87863 + 0.433884i −2.87863 + 0.433884i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.147791 1.97213i 0.147791 1.97213i
\(148\) 0 0
\(149\) 1.44973 1.34515i 1.44973 1.34515i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(150\) −1.95557 + 0.294755i −1.95557 + 0.294755i
\(151\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(152\) 0 0
\(153\) 1.81507 2.27603i 1.81507 2.27603i
\(154\) 1.32091 + 0.636119i 1.32091 + 0.636119i
\(155\) 0 0
\(156\) −2.77064 + 0.854630i −2.77064 + 0.854630i
\(157\) 0.698220 + 1.77904i 0.698220 + 1.77904i 0.623490 + 0.781831i \(0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(158\) −1.82624 0.563320i −1.82624 0.563320i
\(159\) 0.107988 + 1.44100i 0.107988 + 1.44100i
\(160\) 0 0
\(161\) −0.0332580 0.443797i −0.0332580 0.443797i
\(162\) −1.01550 + 4.44920i −1.01550 + 4.44920i
\(163\) 1.97766 + 0.298085i 1.97766 + 0.298085i 0.988831 + 0.149042i \(0.0476190\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.48883 + 0.716983i 1.48883 + 0.716983i 0.988831 0.149042i \(-0.0476190\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) −0.147791 + 1.97213i −0.147791 + 1.97213i
\(169\) −1.03563 + 0.498732i −1.03563 + 0.498732i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(174\) 0 0
\(175\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(176\) −1.32091 0.636119i −1.32091 0.636119i
\(177\) 0 0
\(178\) 0.988831 1.71271i 0.988831 1.71271i
\(179\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(180\) 0 0
\(181\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(182\) 0.109562 + 1.46200i 0.109562 + 1.46200i
\(183\) 0 0
\(184\) 0.0332580 + 0.443797i 0.0332580 + 0.443797i
\(185\) 0 0
\(186\) −0.900969 2.29563i −0.900969 2.29563i
\(187\) 1.40097 0.432142i 1.40097 0.432142i
\(188\) 0 0
\(189\) 3.40530 + 1.63991i 3.40530 + 1.63991i
\(190\) 0 0
\(191\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(192\) 0.147791 1.97213i 0.147791 1.97213i
\(193\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −3.12870 + 2.90301i −3.12870 + 2.90301i
\(199\) 0.722521 0.108903i 0.722521 0.108903i 0.222521 0.974928i \(-0.428571\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0.0747301 0.997204i 0.0747301 0.997204i
\(201\) 0 0
\(202\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(203\) 0 0
\(204\) 1.23305 + 1.54620i 1.23305 + 1.54620i
\(205\) 0 0
\(206\) 0 0
\(207\) 1.23802 + 0.381879i 1.23802 + 0.381879i
\(208\) −0.109562 1.46200i −0.109562 1.46200i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i \(0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) −0.722521 0.108903i −0.722521 0.108903i
\(213\) −1.19395 + 0.814021i −1.19395 + 0.814021i
\(214\) 0.0747301 0.129436i 0.0747301 0.129436i
\(215\) 0 0
\(216\) −3.40530 1.63991i −3.40530 1.63991i
\(217\) −1.23305 + 0.185853i −1.23305 + 0.185853i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(222\) 0 0
\(223\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(224\) −0.955573 0.294755i −0.955573 0.294755i
\(225\) −2.62285 1.26310i −2.62285 1.26310i
\(226\) 0 0
\(227\) 0.365341 0.632789i 0.365341 0.632789i −0.623490 0.781831i \(-0.714286\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(228\) 0 0
\(229\) 1.78181 + 0.268565i 1.78181 + 0.268565i 0.955573 0.294755i \(-0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(230\) 0 0
\(231\) 1.44973 + 2.51100i 1.44973 + 2.51100i
\(232\) 0 0
\(233\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(234\) −4.07842 1.25803i −4.07842 1.25803i
\(235\) 0 0
\(236\) 0 0
\(237\) −2.35654 2.95501i −2.35654 2.95501i
\(238\) 0.900969 0.433884i 0.900969 0.433884i
\(239\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(240\) 0 0
\(241\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(242\) −1.13662 + 0.171318i −1.13662 + 0.171318i
\(243\) −3.84537 + 3.56798i −3.84537 + 3.56798i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 1.23305 0.185853i 1.23305 0.185853i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(252\) −1.81507 + 2.27603i −1.81507 + 2.27603i
\(253\) 0.406813 + 0.510127i 0.406813 + 0.510127i
\(254\) 0 0
\(255\) 0 0
\(256\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(257\) −0.0747301 0.997204i −0.0747301 0.997204i −0.900969 0.433884i \(-0.857143\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.367711 0.250701i 0.367711 0.250701i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) −1.44973 2.51100i −1.44973 2.51100i
\(265\) 0 0
\(266\) 0 0
\(267\) 3.52382 1.69698i 3.52382 1.69698i
\(268\) 0 0
\(269\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(270\) 0 0
\(271\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(272\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(273\) −1.44973 + 2.51100i −1.44973 + 2.51100i
\(274\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(275\) −0.733052 1.26968i −0.733052 1.26968i
\(276\) −0.440071 + 0.762226i −0.440071 + 0.762226i
\(277\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(278\) 1.88980 + 0.284841i 1.88980 + 0.284841i
\(279\) 0.807782 3.53912i 0.807782 3.53912i
\(280\) 0 0
\(281\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(282\) 0 0
\(283\) 1.40097 + 0.432142i 1.40097 + 0.432142i 0.900969 0.433884i \(-0.142857\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) −0.266948 0.680173i −0.266948 0.680173i
\(285\) 0 0
\(286\) −1.34017 1.68052i −1.34017 1.68052i
\(287\) 0 0
\(288\) 1.81507 2.27603i 1.81507 2.27603i
\(289\) 0.365341 0.930874i 0.365341 0.930874i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.91115 1.91115 0.955573 0.294755i \(-0.0952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(294\) 1.23305 + 1.54620i 1.23305 + 1.54620i
\(295\) 0 0
\(296\) 0 0
\(297\) −5.47939 + 0.825886i −5.47939 + 0.825886i
\(298\) −0.147791 + 1.97213i −0.147791 + 1.97213i
\(299\) −0.238377 + 0.607374i −0.238377 + 0.607374i
\(300\) 1.23305 1.54620i 1.23305 1.54620i
\(301\) 0 0
\(302\) 0 0
\(303\) −0.841040 + 0.259426i −0.841040 + 0.259426i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.217550 + 2.90301i 0.217550 + 2.90301i
\(307\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(308\) −1.40097 + 0.432142i −1.40097 + 0.432142i
\(309\) 0 0
\(310\) 0 0
\(311\) 0.826239 0.563320i 0.826239 0.563320i −0.0747301 0.997204i \(-0.523810\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(312\) 1.44973 2.51100i 1.44973 2.51100i
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) −1.72188 0.829215i −1.72188 0.829215i
\(315\) 0 0
\(316\) 1.72188 0.829215i 1.72188 0.829215i
\(317\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(318\) −1.05929 0.982878i −1.05929 0.982878i
\(319\) 0 0
\(320\) 0 0
\(321\) 0.266310 0.128248i 0.266310 0.128248i
\(322\) 0.326239 + 0.302705i 0.326239 + 0.302705i
\(323\) 0 0
\(324\) −2.28181 3.95221i −2.28181 3.95221i
\(325\) 0.733052 1.26968i 0.733052 1.26968i
\(326\) −1.65248 + 1.12664i −1.65248 + 1.12664i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.57906 + 0.487076i −1.57906 + 0.487076i
\(335\) 0 0
\(336\) −1.23305 1.54620i −1.23305 1.54620i
\(337\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(338\) 0.419945 1.07000i 0.419945 1.07000i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.34017 1.24349i 1.34017 1.24349i
\(342\) 0 0
\(343\) 0.900969 0.433884i 0.900969 0.433884i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.134659 1.79690i 0.134659 1.79690i −0.365341 0.930874i \(-0.619048\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(348\) 0 0
\(349\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) −0.623490 0.781831i −0.623490 0.781831i
\(351\) −3.45493 4.33235i −3.45493 4.33235i
\(352\) 1.40097 0.432142i 1.40097 0.432142i
\(353\) −0.365341 0.930874i −0.365341 0.930874i −0.988831 0.149042i \(-0.952381\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.440071 + 1.92808i 0.440071 + 1.92808i
\(357\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(358\) 0 0
\(359\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) −2.04812 0.986323i −2.04812 0.986323i
\(364\) −1.07473 0.997204i −1.07473 0.997204i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.109562 + 0.101659i 0.109562 + 0.101659i 0.733052 0.680173i \(-0.238095\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(368\) −0.326239 0.302705i −0.326239 0.302705i
\(369\) 0 0
\(370\) 0 0
\(371\) −0.603718 + 0.411608i −0.603718 + 0.411608i
\(372\) 2.22188 + 1.07000i 2.22188 + 1.07000i
\(373\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(374\) −0.733052 + 1.26968i −0.733052 + 1.26968i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) −3.61168 + 1.11406i −3.61168 + 1.11406i
\(379\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(384\) 1.23305 + 1.54620i 1.23305 + 1.54620i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.63402 + 0.246289i −1.63402 + 0.246289i −0.900969 0.433884i \(-0.857143\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(390\) 0 0
\(391\) 0.445042 0.445042
\(392\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(393\) 0.880142 0.880142
\(394\) 0 0
\(395\) 0 0
\(396\) 0.318951 4.25611i 0.318951 4.25611i
\(397\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(398\) −0.455573 + 0.571270i −0.455573 + 0.571270i
\(399\) 0 0
\(400\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(401\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(402\) 0 0
\(403\) 1.74698 + 0.538872i 1.74698 + 0.538872i
\(404\) −0.0332580 0.443797i −0.0332580 0.443797i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −1.95557 0.294755i −1.95557 0.294755i
\(409\) 0.603718 0.411608i 0.603718 0.411608i −0.222521 0.974928i \(-0.571429\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(410\) 0 0
\(411\) 1.95557 + 3.38715i 1.95557 + 3.38715i
\(412\) 0 0
\(413\) 0 0
\(414\) −1.16728 + 0.562132i −1.16728 + 0.562132i
\(415\) 0 0
\(416\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(417\) 2.77064 + 2.57078i 2.77064 + 2.57078i
\(418\) 0 0
\(419\) 1.72188 0.829215i 1.72188 0.829215i 0.733052 0.680173i \(-0.238095\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(420\) 0 0
\(421\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(422\) −0.900969 1.56052i −0.900969 1.56052i
\(423\) 0 0
\(424\) 0.603718 0.411608i 0.603718 0.411608i
\(425\) −0.988831 0.149042i −0.988831 0.149042i
\(426\) 0.321552 1.40881i 0.321552 1.40881i
\(427\) 0 0
\(428\) 0.0332580 + 0.145713i 0.0332580 + 0.145713i
\(429\) −0.317671 4.23902i −0.317671 4.23902i
\(430\) 0 0
\(431\) 0.365341 + 0.930874i 0.365341 + 0.930874i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(432\) 3.61168 1.11406i 3.61168 1.11406i
\(433\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) 0.777479 0.974928i 0.777479 0.974928i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.40097 1.29991i 1.40097 1.29991i 0.500000 0.866025i \(-0.333333\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(440\) 0 0
\(441\) 0.217550 + 2.90301i 0.217550 + 2.90301i
\(442\) −1.46610 −1.46610
\(443\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2.43856 + 3.05786i −2.43856 + 3.05786i
\(448\) 0.900969 0.433884i 0.900969 0.433884i
\(449\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(450\) 2.78181 0.858075i 2.78181 0.858075i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.162592 + 0.712362i 0.162592 + 0.712362i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.440071 + 0.0663300i 0.440071 + 0.0663300i 0.365341 0.930874i \(-0.380952\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(458\) −1.48883 + 1.01507i −1.48883 + 1.01507i
\(459\) −1.88980 + 3.27323i −1.88980 + 3.27323i
\(460\) 0 0
\(461\) −0.658322 0.317031i −0.658322 0.317031i 0.0747301 0.997204i \(-0.476190\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(462\) −2.77064 0.854630i −2.77064 0.854630i
\(463\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(468\) 3.84537 1.85183i 3.84537 1.85183i
\(469\) 0 0
\(470\) 0 0
\(471\) −1.88980 3.27323i −1.88980 3.27323i
\(472\) 0 0
\(473\) 0 0
\(474\) 3.73738 + 0.563320i 3.73738 + 0.563320i
\(475\) 0 0
\(476\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(477\) −0.473329 2.07379i −0.473329 2.07379i
\(478\) 0 0
\(479\) 0.425270 + 0.131178i 0.425270 + 0.131178i 0.500000 0.866025i \(-0.333333\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.195850 + 0.858075i 0.195850 + 0.858075i
\(484\) 0.716677 0.898684i 0.716677 0.898684i
\(485\) 0 0
\(486\) 0.392012 5.23104i 0.392012 5.23104i
\(487\) −0.988831 + 0.149042i −0.988831 + 0.149042i −0.623490 0.781831i \(-0.714286\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(488\) 0 0
\(489\) −3.95532 −3.95532
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.777479 + 0.974928i −0.777479 + 0.974928i
\(497\) −0.658322 0.317031i −0.658322 0.317031i
\(498\) 0 0
\(499\) −1.82624 + 0.563320i −1.82624 + 0.563320i −0.826239 + 0.563320i \(0.809524\pi\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) −3.12285 0.963272i −3.12285 0.963272i
\(502\) 0 0
\(503\) 0.0332580 + 0.145713i 0.0332580 + 0.145713i 0.988831 0.149042i \(-0.0476190\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(504\) −0.217550 2.90301i −0.217550 2.90301i
\(505\) 0 0
\(506\) −0.645190 0.0972467i −0.645190 0.0972467i
\(507\) 1.87824 1.28056i 1.87824 1.28056i
\(508\) 0 0
\(509\) 0.222521 + 0.385418i 0.222521 + 0.385418i 0.955573 0.294755i \(-0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(513\) 0 0
\(514\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(524\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(525\) −0.147791 1.97213i −0.147791 1.97213i
\(526\) 0 0
\(527\) −0.0931869 1.24349i −0.0931869 1.24349i
\(528\) 2.77064 + 0.854630i 2.77064 + 0.854630i
\(529\) −0.292981 0.746503i −0.292981 0.746503i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −1.42890 + 3.64078i −1.42890 + 3.64078i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.733052 + 1.26968i −0.733052 + 1.26968i
\(540\) 0 0
\(541\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.365341 0.930874i 0.365341 0.930874i
\(545\) 0 0
\(546\) −0.645190 2.82676i −0.645190 2.82676i
\(547\) −1.03030 1.29196i −1.03030 1.29196i −0.955573 0.294755i \(-0.904762\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(548\) −1.88980 + 0.582926i −1.88980 + 0.582926i
\(549\) 0 0
\(550\) 1.40097 + 0.432142i 1.40097 + 0.432142i
\(551\) 0 0
\(552\) −0.195850 0.858075i −0.195850 0.858075i
\(553\) 0.698220 1.77904i 0.698220 1.77904i
\(554\) 0 0
\(555\) 0 0
\(556\) −1.57906 + 1.07659i −1.57906 + 1.07659i
\(557\) −0.365341 + 0.632789i −0.365341 + 0.632789i −0.988831 0.149042i \(-0.952381\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(558\) 1.81507 + 3.14379i 1.81507 + 3.14379i
\(559\) 0 0
\(560\) 0 0
\(561\) −2.61232 + 1.25803i −2.61232 + 1.25803i
\(562\) −0.826239 0.563320i −0.826239 0.563320i
\(563\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.32091 + 0.636119i −1.32091 + 0.636119i
\(567\) −4.36087 1.34515i −4.36087 1.34515i
\(568\) 0.658322 + 0.317031i 0.658322 + 0.317031i
\(569\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(570\) 0 0
\(571\) −1.03030 + 0.702449i −1.03030 + 0.702449i −0.955573 0.294755i \(-0.904762\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(572\) 2.12545 + 0.320360i 2.12545 + 0.320360i
\(573\) 0 0
\(574\) 0 0
\(575\) −0.0990311 0.433884i −0.0990311 0.433884i
\(576\) 0.217550 + 2.90301i 0.217550 + 2.90301i
\(577\) 0.142820 + 0.0440542i 0.142820 + 0.0440542i 0.365341 0.930874i \(-0.380952\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(578\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0.391374 0.997204i 0.391374 0.997204i
\(584\) 0 0
\(585\) 0 0
\(586\) −1.40097 + 1.29991i −1.40097 + 1.29991i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.95557 0.294755i −1.95557 0.294755i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.0546039 0.139129i 0.0546039 0.139129i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(594\) 3.45493 4.33235i 3.45493 4.33235i
\(595\) 0 0
\(596\) −1.23305 1.54620i −1.23305 1.54620i
\(597\) −1.38084 + 0.425934i −1.38084 + 0.425934i
\(598\) −0.238377 0.607374i −0.238377 0.607374i
\(599\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(600\) 0.147791 + 1.97213i 0.147791 + 1.97213i
\(601\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0.440071 0.762226i 0.440071 0.762226i
\(607\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −2.13402 1.98008i −2.13402 1.98008i
\(613\) −1.21135 1.12397i −1.21135 1.12397i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.733052 1.26968i 0.733052 1.26968i
\(617\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(618\) 0 0
\(619\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −1.66329 0.250701i −1.66329 0.250701i
\(622\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(623\) 1.63402 + 1.11406i 1.63402 + 1.11406i
\(624\) 0.645190 + 2.82676i 0.645190 + 2.82676i
\(625\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.82624 0.563320i 1.82624 0.563320i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(632\) −0.698220 + 1.77904i −0.698220 + 1.77904i
\(633\) 0.266310 3.55366i 0.266310 3.55366i
\(634\) 0 0
\(635\) 0 0
\(636\) 1.44504 1.44504
\(637\) −1.46610 −1.46610
\(638\) 0 0
\(639\) 1.55929 1.44681i 1.55929 1.44681i
\(640\) 0 0
\(641\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(642\) −0.107988 + 0.275149i −0.107988 + 0.275149i
\(643\) −1.03030 + 1.29196i −1.03030 + 1.29196i −0.0747301 + 0.997204i \(0.523810\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(644\) −0.445042 −0.445042
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(648\) 4.36087 + 1.34515i 4.36087 + 1.34515i
\(649\) 0 0
\(650\) 0.326239 + 1.42935i 0.326239 + 1.42935i
\(651\) 2.35654 0.726897i 2.35654 0.726897i
\(652\) 0.445042 1.94986i 0.445042 1.94986i
\(653\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) −0.914101 0.848162i −0.914101 0.848162i 0.0747301 0.997204i \(-0.476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(662\) 0 0
\(663\) −2.39564 1.63332i −2.39564 1.63332i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.826239 1.43109i 0.826239 1.43109i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(673\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(674\) 0 0
\(675\) 3.61168 + 1.11406i 3.61168 + 1.11406i
\(676\) 0.419945 + 1.07000i 0.419945 + 1.07000i
\(677\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.527933 + 1.34515i −0.527933 + 1.34515i
\(682\) −0.136622 + 1.82309i −0.136622 + 1.82309i
\(683\) 0.722521 0.108903i 0.722521 0.108903i 0.222521 0.974928i \(-0.428571\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(687\) −3.56362 −3.56362
\(688\) 0 0
\(689\) 1.05929 0.159662i 1.05929 0.159662i
\(690\) 0 0
\(691\) −0.455573 + 1.16078i −0.455573 + 1.16078i 0.500000 + 0.866025i \(0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(692\) 0 0
\(693\) −2.66108 3.33689i −2.66108 3.33689i
\(694\) 1.12349 + 1.40881i 1.12349 + 1.40881i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.134659 1.79690i −0.134659 1.79690i
\(699\) 0 0
\(700\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(701\) −0.162592 + 0.712362i −0.162592 + 0.712362i 0.826239 + 0.563320i \(0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(702\) 5.47939 + 0.825886i 5.47939 + 0.825886i
\(703\) 0 0
\(704\) −0.733052 + 1.26968i −0.733052 + 1.26968i
\(705\) 0 0
\(706\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(707\) −0.326239 0.302705i −0.326239 0.302705i
\(708\) 0 0
\(709\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(710\) 0 0
\(711\) 4.07842 + 3.78422i 4.07842 + 3.78422i
\(712\) −1.63402 1.11406i −1.63402 1.11406i
\(713\) 0.500000 0.240787i 0.500000 0.240787i
\(714\) −1.63402 + 1.11406i −1.63402 + 1.11406i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.44973 0.218511i −1.44973 0.218511i −0.623490 0.781831i \(-0.714286\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.222521 0.974928i −0.222521 0.974928i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 2.17225 0.670050i 2.17225 0.670050i
\(727\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(728\) 1.46610 1.46610
\(729\) 3.62285 4.54291i 3.62285 4.54291i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.733052 0.680173i 0.733052 0.680173i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(734\) −0.149460 −0.149460
\(735\) 0 0
\(736\) 0.445042 0.445042
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.162592 0.712362i 0.162592 0.712362i
\(743\) 1.23305 + 1.54620i 1.23305 + 1.54620i 0.733052 + 0.680173i \(0.238095\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) −2.35654 + 0.726897i −2.35654 + 0.726897i
\(745\) 0 0
\(746\) −1.40097 0.432142i −1.40097 0.432142i
\(747\) 0 0
\(748\) −0.326239 1.42935i −0.326239 1.42935i
\(749\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i
\(750\) 0 0
\(751\) 1.88980 + 0.284841i 1.88980 + 0.284841i 0.988831 0.149042i \(-0.0476190\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 1.88980 3.27323i 1.88980 3.27323i
\(757\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(758\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(759\) −0.945915 0.877681i −0.945915 0.877681i
\(760\) 0 0
\(761\) 1.36534 + 0.930874i 1.36534 + 0.930874i 1.00000 \(0\)
0.365341 + 0.930874i \(0.380952\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −1.95557 0.294755i −1.95557 0.294755i
\(769\) 0.222521 0.974928i 0.222521 0.974928i −0.733052 0.680173i \(-0.761905\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(770\) 0 0
\(771\) 0.440071 + 1.92808i 0.440071 + 1.92808i
\(772\) 0 0
\(773\) 1.57906 + 0.487076i 1.57906 + 0.487076i 0.955573 0.294755i \(-0.0952381\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(774\) 0 0
\(775\) −1.19158 + 0.367554i −1.19158 + 0.367554i
\(776\) 0 0
\(777\) 0 0
\(778\) 1.03030 1.29196i 1.03030 1.29196i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.05929 0.159662i 1.05929 0.159662i
\(782\) −0.326239 + 0.302705i −0.326239 + 0.302705i
\(783\) 0 0
\(784\) 0.365341 0.930874i 0.365341 0.930874i
\(785\) 0 0
\(786\) −0.645190 + 0.598649i −0.645190 + 0.598649i
\(787\) −1.78181 + 0.268565i −1.78181 + 0.268565i −0.955573 0.294755i \(-0.904762\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 2.66108 + 3.33689i 2.66108 + 3.33689i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.0546039 0.728639i −0.0546039 0.728639i
\(797\) −0.162592 0.712362i −0.162592 0.712362i −0.988831 0.149042i \(-0.952381\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.988831 0.149042i −0.988831 0.149042i
\(801\) −4.75687 + 3.24318i −4.75687 + 3.24318i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −1.64715 + 0.793227i −1.64715 + 0.793227i
\(807\) 0 0
\(808\) 0.326239 + 0.302705i 0.326239 + 0.302705i
\(809\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(810\) 0 0
\(811\) 0.658322 0.317031i 0.658322 0.317031i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 1.63402 1.11406i 1.63402 1.11406i
\(817\) 0 0
\(818\) −0.162592 + 0.712362i −0.162592 + 0.712362i
\(819\) 1.55929 3.97301i 1.55929 3.97301i
\(820\) 0 0
\(821\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(822\) −3.73738 1.15283i −3.73738 1.15283i
\(823\) 0.722521 + 1.84095i 0.722521 + 1.84095i 0.500000 + 0.866025i \(0.333333\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(824\) 0 0
\(825\) 1.80778 + 2.26689i 1.80778 + 2.26689i
\(826\) 0 0
\(827\) −0.0931869 + 0.116853i −0.0931869 + 0.116853i −0.826239 0.563320i \(-0.809524\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(828\) 0.473329 1.20602i 0.473329 1.20602i
\(829\) 0.0111692 0.149042i 0.0111692 0.149042i −0.988831 0.149042i \(-0.952381\pi\)
1.00000 \(0\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.46610 −1.46610
\(833\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(834\) −3.77960 −3.77960
\(835\) 0 0
\(836\) 0 0
\(837\) −0.352209 + 4.69990i −0.352209 + 4.69990i
\(838\) −0.698220 + 1.77904i −0.698220 + 1.77904i
\(839\) 1.12349 1.40881i 1.12349 1.40881i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(840\) 0 0
\(841\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(842\) 1.19158 0.367554i 1.19158 0.367554i
\(843\) −0.722521 1.84095i −0.722521 1.84095i
\(844\) 1.72188 + 0.531130i 1.72188 + 0.531130i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.0858993 1.14625i −0.0858993 1.14625i
\(848\) −0.162592 + 0.712362i −0.162592 + 0.712362i
\(849\) −2.86707 0.432142i −2.86707 0.432142i
\(850\) 0.826239 0.563320i 0.826239 0.563320i
\(851\) 0 0
\(852\) 0.722521 + 1.25144i 0.722521 + 1.25144i
\(853\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.123490 0.0841939i −0.123490 0.0841939i
\(857\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(858\) 3.11613 + 2.89135i 3.11613 + 2.89135i
\(859\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.900969 0.433884i −0.900969 0.433884i
\(863\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) −1.88980 + 3.27323i −1.88980 + 3.27323i
\(865\) 0 0
\(866\) 0.440071 + 0.0663300i 0.440071 + 0.0663300i
\(867\) −0.440071 + 1.92808i −0.440071 + 1.92808i
\(868\) 0.0931869 + 1.24349i 0.0931869 + 1.24349i
\(869\) 0.623490 + 2.73169i 0.623490 + 2.73169i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(878\) −0.142820 + 1.90580i −0.142820 + 1.90580i
\(879\) −3.73738 + 0.563320i −3.73738 + 0.563320i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −2.13402 1.98008i −2.13402 1.98008i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 1.07473 0.997204i 1.07473 0.997204i
\(885\) 0 0
\(886\) 0 0
\(887\) 0.535628 1.36476i 0.535628 1.36476i −0.365341 0.930874i \(-0.619048\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.39349 1.97213i 6.39349 1.97213i
\(892\) 0 0
\(893\) 0 0
\(894\) −0.292280 3.90021i −0.292280 3.90021i
\(895\) 0 0
\(896\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(897\) 0.287137 1.25803i 0.287137 1.25803i
\(898\) 0 0
\(899\) 0 0
\(900\) −1.45557 + 2.52113i −1.45557 + 2.52113i
\(901\) −0.365341 0.632789i −0.365341 0.632789i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.914101 + 0.848162i 0.914101 + 0.848162i 0.988831 0.149042i \(-0.0476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(908\) −0.603718 0.411608i −0.603718 0.411608i
\(909\) 1.16728 0.562132i 1.16728 0.562132i
\(910\) 0 0
\(911\) −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i \(-0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.367711 + 0.250701i −0.367711 + 0.250701i
\(915\) 0 0
\(916\) 0.400969 1.75676i 0.400969 1.75676i
\(917\) 0.222521 + 0.385418i 0.222521 + 0.385418i
\(918\) −0.841040 3.68484i −0.841040 3.68484i
\(919\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.698220 0.215372i 0.698220 0.215372i
\(923\) 0.667917 + 0.837541i 0.667917 + 0.837541i
\(924\) 2.61232 1.25803i 2.61232 1.25803i
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(934\) 0 0
\(935\) 0 0
\(936\) −1.55929 + 3.97301i −1.55929 + 3.97301i
\(937\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(942\) 3.61168 + 1.11406i 3.61168 + 1.11406i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.988831 0.149042i −0.988831 0.149042i −0.365341 0.930874i \(-0.619048\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(948\) −3.12285 + 2.12912i −3.12285 + 2.12912i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −0.365341 0.930874i −0.365341 0.930874i
\(953\) −1.48883 + 0.716983i −1.48883 + 0.716983i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(954\) 1.75751 + 1.19825i 1.75751 + 1.19825i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −0.400969 + 0.193096i −0.400969 + 0.193096i
\(959\) −0.988831 + 1.71271i −0.988831 + 1.71271i
\(960\) 0 0
\(961\) −0.277479 0.480608i −0.277479 0.480608i
\(962\) 0 0
\(963\) −0.359497 + 0.245101i −0.359497 + 0.245101i
\(964\) 0 0
\(965\) 0 0
\(966\) −0.727208 0.495802i −0.727208 0.495802i
\(967\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(968\) 0.0858993 + 1.14625i 0.0858993 + 1.14625i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(972\) 3.27064 + 4.10126i 3.27064 + 4.10126i
\(973\) −0.425270 + 1.86323i −0.425270 + 1.86323i
\(974\) 0.623490 0.781831i 0.623490 0.781831i
\(975\) −1.05929 + 2.69903i −1.05929 + 2.69903i
\(976\) 0 0
\(977\) 0.440071 0.0663300i 0.440071 0.0663300i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(978\) 2.89946 2.69030i 2.89946 2.69030i
\(979\) −2.89946 −2.89946
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.44973 + 0.218511i −1.44973 + 0.218511i −0.826239 0.563320i \(-0.809524\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.57906 0.487076i −1.57906 0.487076i −0.623490 0.781831i \(-0.714286\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(992\) −0.0931869 1.24349i −0.0931869 1.24349i
\(993\) 0 0
\(994\) 0.698220 0.215372i 0.698220 0.215372i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(998\) 0.955573 1.65510i 0.955573 1.65510i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3332.1.cc.a.1971.1 yes 12
4.3 odd 2 3332.1.cc.b.1971.1 yes 12
17.16 even 2 3332.1.cc.b.1971.1 yes 12
49.9 even 21 inner 3332.1.cc.a.1087.1 12
68.67 odd 2 CM 3332.1.cc.a.1971.1 yes 12
196.107 odd 42 3332.1.cc.b.1087.1 yes 12
833.254 even 42 3332.1.cc.b.1087.1 yes 12
3332.1087 odd 42 inner 3332.1.cc.a.1087.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3332.1.cc.a.1087.1 12 49.9 even 21 inner
3332.1.cc.a.1087.1 12 3332.1087 odd 42 inner
3332.1.cc.a.1971.1 yes 12 1.1 even 1 trivial
3332.1.cc.a.1971.1 yes 12 68.67 odd 2 CM
3332.1.cc.b.1087.1 yes 12 196.107 odd 42
3332.1.cc.b.1087.1 yes 12 833.254 even 42
3332.1.cc.b.1971.1 yes 12 4.3 odd 2
3332.1.cc.b.1971.1 yes 12 17.16 even 2