L(s) = 1 | + (0.5 − 0.866i)3-s + (1 + 1.73i)5-s + (2.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s + (−1 + 1.73i)11-s + 13-s + 1.99·15-s + (0.5 + 0.866i)19-s + (2 − 1.73i)21-s + (0.500 − 0.866i)25-s − 0.999·27-s + 4·29-s + (4.5 − 7.79i)31-s + (0.999 + 1.73i)33-s + (1.00 + 5.19i)35-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.447 + 0.774i)5-s + (0.944 + 0.327i)7-s + (−0.166 − 0.288i)9-s + (−0.301 + 0.522i)11-s + 0.277·13-s + 0.516·15-s + (0.114 + 0.198i)19-s + (0.436 − 0.377i)21-s + (0.100 − 0.173i)25-s − 0.192·27-s + 0.742·29-s + (0.808 − 1.39i)31-s + (0.174 + 0.301i)33-s + (0.169 + 0.878i)35-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)(0.991−0.126i)Λ(2−s)
Λ(s)=(=(336s/2ΓC(s+1/2)L(s)(0.991−0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
336
= 24⋅3⋅7
|
Sign: |
0.991−0.126i
|
Analytic conductor: |
2.68297 |
Root analytic conductor: |
1.63797 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ336(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 336, ( :1/2), 0.991−0.126i)
|
Particular Values
L(1) |
≈ |
1.65947+0.105310i |
L(21) |
≈ |
1.65947+0.105310i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−2.5−0.866i)T |
good | 5 | 1+(−1−1.73i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1−T+13T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+(−4.5+7.79i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.5+2.59i)T+(−18.5+32.0i)T2 |
| 41 | 1+10T+41T2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(3+5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+(6−10.3i)T+(−26.5−45.8i)T2 |
| 59 | 1+(6−10.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(5+8.66i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.5−4.33i)T+(−33.5−58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+(−1.5+2.59i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.5+0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+(8+13.8i)T+(−44.5+77.0i)T2 |
| 97 | 1+6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.61939431803824956055912989940, −10.64833204944929744237983947565, −9.807703268306811534641644660209, −8.596179846730826081126212669275, −7.80582835615406115758091385680, −6.80391003450114410908091692358, −5.82661766187358698849374095707, −4.56022737392867558812610682089, −2.91328961523927284058033257501, −1.79967279993630797846841592914,
1.47431717086110302589789240265, 3.22664450895118351570326821253, 4.69813009178533278507597604460, 5.26448461159680183834924613663, 6.69096001391946685916152534534, 8.163797806184969046578832758502, 8.575184208198096266151663157800, 9.683132609076294109829606803332, 10.58122589564776834266931025629, 11.40600450184990641011993417741