Properties

Label 336.2.q.f
Level $336$
Weight $2$
Character orbit 336.q
Analytic conductor $2.683$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,2,Mod(193,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 336.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.68297350792\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} + 2 \zeta_{6} q^{5} + (\zeta_{6} + 2) q^{7} - \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{11} + q^{13} + 2 q^{15} + \zeta_{6} q^{19} + ( - 2 \zeta_{6} + 3) q^{21} + ( - \zeta_{6} + 1) q^{25} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 2 q^{5} + 5 q^{7} - q^{9} - 2 q^{11} + 2 q^{13} + 4 q^{15} + q^{19} + 4 q^{21} + q^{25} - 2 q^{27} + 8 q^{29} + 9 q^{31} + 2 q^{33} + 2 q^{35} - 3 q^{37} + q^{39} - 20 q^{41} - 10 q^{43}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 1.00000 + 1.73205i 0 2.50000 + 0.866025i 0 −0.500000 0.866025i 0
289.1 0 0.500000 + 0.866025i 0 1.00000 1.73205i 0 2.50000 0.866025i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.2.q.f 2
3.b odd 2 1 1008.2.s.d 2
4.b odd 2 1 21.2.e.a 2
7.b odd 2 1 2352.2.q.c 2
7.c even 3 1 inner 336.2.q.f 2
7.c even 3 1 2352.2.a.d 1
7.d odd 6 1 2352.2.a.w 1
7.d odd 6 1 2352.2.q.c 2
8.b even 2 1 1344.2.q.c 2
8.d odd 2 1 1344.2.q.m 2
12.b even 2 1 63.2.e.b 2
20.d odd 2 1 525.2.i.e 2
20.e even 4 2 525.2.r.e 4
21.g even 6 1 7056.2.a.m 1
21.h odd 6 1 1008.2.s.d 2
21.h odd 6 1 7056.2.a.bp 1
28.d even 2 1 147.2.e.a 2
28.f even 6 1 147.2.a.b 1
28.f even 6 1 147.2.e.a 2
28.g odd 6 1 21.2.e.a 2
28.g odd 6 1 147.2.a.c 1
36.f odd 6 1 567.2.g.a 2
36.f odd 6 1 567.2.h.f 2
36.h even 6 1 567.2.g.f 2
36.h even 6 1 567.2.h.a 2
56.j odd 6 1 9408.2.a.k 1
56.k odd 6 1 1344.2.q.m 2
56.k odd 6 1 9408.2.a.bg 1
56.m even 6 1 9408.2.a.bz 1
56.p even 6 1 1344.2.q.c 2
56.p even 6 1 9408.2.a.cv 1
84.h odd 2 1 441.2.e.e 2
84.j odd 6 1 441.2.a.a 1
84.j odd 6 1 441.2.e.e 2
84.n even 6 1 63.2.e.b 2
84.n even 6 1 441.2.a.b 1
140.p odd 6 1 525.2.i.e 2
140.p odd 6 1 3675.2.a.a 1
140.s even 6 1 3675.2.a.c 1
140.w even 12 2 525.2.r.e 4
252.o even 6 1 567.2.h.a 2
252.u odd 6 1 567.2.g.a 2
252.bb even 6 1 567.2.g.f 2
252.bl odd 6 1 567.2.h.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.e.a 2 4.b odd 2 1
21.2.e.a 2 28.g odd 6 1
63.2.e.b 2 12.b even 2 1
63.2.e.b 2 84.n even 6 1
147.2.a.b 1 28.f even 6 1
147.2.a.c 1 28.g odd 6 1
147.2.e.a 2 28.d even 2 1
147.2.e.a 2 28.f even 6 1
336.2.q.f 2 1.a even 1 1 trivial
336.2.q.f 2 7.c even 3 1 inner
441.2.a.a 1 84.j odd 6 1
441.2.a.b 1 84.n even 6 1
441.2.e.e 2 84.h odd 2 1
441.2.e.e 2 84.j odd 6 1
525.2.i.e 2 20.d odd 2 1
525.2.i.e 2 140.p odd 6 1
525.2.r.e 4 20.e even 4 2
525.2.r.e 4 140.w even 12 2
567.2.g.a 2 36.f odd 6 1
567.2.g.a 2 252.u odd 6 1
567.2.g.f 2 36.h even 6 1
567.2.g.f 2 252.bb even 6 1
567.2.h.a 2 36.h even 6 1
567.2.h.a 2 252.o even 6 1
567.2.h.f 2 36.f odd 6 1
567.2.h.f 2 252.bl odd 6 1
1008.2.s.d 2 3.b odd 2 1
1008.2.s.d 2 21.h odd 6 1
1344.2.q.c 2 8.b even 2 1
1344.2.q.c 2 56.p even 6 1
1344.2.q.m 2 8.d odd 2 1
1344.2.q.m 2 56.k odd 6 1
2352.2.a.d 1 7.c even 3 1
2352.2.a.w 1 7.d odd 6 1
2352.2.q.c 2 7.b odd 2 1
2352.2.q.c 2 7.d odd 6 1
3675.2.a.a 1 140.p odd 6 1
3675.2.a.c 1 140.s even 6 1
7056.2.a.m 1 21.g even 6 1
7056.2.a.bp 1 21.h odd 6 1
9408.2.a.k 1 56.j odd 6 1
9408.2.a.bg 1 56.k odd 6 1
9408.2.a.bz 1 56.m even 6 1
9408.2.a.cv 1 56.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(336, [\chi])\):

\( T_{5}^{2} - 2T_{5} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$37$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$41$ \( (T + 10)^{2} \) Copy content Toggle raw display
$43$ \( (T + 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$79$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$83$ \( (T + 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$97$ \( (T + 6)^{2} \) Copy content Toggle raw display
show more
show less