Properties

Label 21.2.e.a
Level 2121
Weight 22
Character orbit 21.e
Analytic conductor 0.1680.168
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,2,Mod(4,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 21=37 21 = 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 21.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1676858442450.167685844245
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ62)q2ζ6q32ζ6q4+(2ζ6+2)q5+2q6+(ζ63)q7+(ζ61)q9+4ζ6q10+2ζ6q11+(2ζ62)q12+2q99+O(q100) q + (2 \zeta_{6} - 2) q^{2} - \zeta_{6} q^{3} - 2 \zeta_{6} q^{4} + ( - 2 \zeta_{6} + 2) q^{5} + 2 q^{6} + (\zeta_{6} - 3) q^{7} + (\zeta_{6} - 1) q^{9} + 4 \zeta_{6} q^{10} + 2 \zeta_{6} q^{11} + (2 \zeta_{6} - 2) q^{12} + \cdots - 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2q32q4+2q5+4q65q7q9+4q10+2q112q12+2q13+2q144q15+4q162q18q198q20+4q218q22+4q99+O(q100) 2 q - 2 q^{2} - q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{6} - 5 q^{7} - q^{9} + 4 q^{10} + 2 q^{11} - 2 q^{12} + 2 q^{13} + 2 q^{14} - 4 q^{15} + 4 q^{16} - 2 q^{18} - q^{19} - 8 q^{20} + 4 q^{21} - 8 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/21Z)×\left(\mathbb{Z}/21\mathbb{Z}\right)^\times.

nn 88 1010
χ(n)\chi(n) 11 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
4.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 1.73205i −0.500000 + 0.866025i −1.00000 + 1.73205i 1.00000 + 1.73205i 2.00000 −2.50000 0.866025i 0 −0.500000 0.866025i 2.00000 3.46410i
16.1 −1.00000 + 1.73205i −0.500000 0.866025i −1.00000 1.73205i 1.00000 1.73205i 2.00000 −2.50000 + 0.866025i 0 −0.500000 + 0.866025i 2.00000 + 3.46410i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 21.2.e.a 2
3.b odd 2 1 63.2.e.b 2
4.b odd 2 1 336.2.q.f 2
5.b even 2 1 525.2.i.e 2
5.c odd 4 2 525.2.r.e 4
7.b odd 2 1 147.2.e.a 2
7.c even 3 1 inner 21.2.e.a 2
7.c even 3 1 147.2.a.c 1
7.d odd 6 1 147.2.a.b 1
7.d odd 6 1 147.2.e.a 2
8.b even 2 1 1344.2.q.m 2
8.d odd 2 1 1344.2.q.c 2
9.c even 3 1 567.2.g.a 2
9.c even 3 1 567.2.h.f 2
9.d odd 6 1 567.2.g.f 2
9.d odd 6 1 567.2.h.a 2
12.b even 2 1 1008.2.s.d 2
21.c even 2 1 441.2.e.e 2
21.g even 6 1 441.2.a.a 1
21.g even 6 1 441.2.e.e 2
21.h odd 6 1 63.2.e.b 2
21.h odd 6 1 441.2.a.b 1
28.d even 2 1 2352.2.q.c 2
28.f even 6 1 2352.2.a.w 1
28.f even 6 1 2352.2.q.c 2
28.g odd 6 1 336.2.q.f 2
28.g odd 6 1 2352.2.a.d 1
35.i odd 6 1 3675.2.a.c 1
35.j even 6 1 525.2.i.e 2
35.j even 6 1 3675.2.a.a 1
35.l odd 12 2 525.2.r.e 4
56.j odd 6 1 9408.2.a.bz 1
56.k odd 6 1 1344.2.q.c 2
56.k odd 6 1 9408.2.a.cv 1
56.m even 6 1 9408.2.a.k 1
56.p even 6 1 1344.2.q.m 2
56.p even 6 1 9408.2.a.bg 1
63.g even 3 1 567.2.h.f 2
63.h even 3 1 567.2.g.a 2
63.j odd 6 1 567.2.g.f 2
63.n odd 6 1 567.2.h.a 2
84.j odd 6 1 7056.2.a.m 1
84.n even 6 1 1008.2.s.d 2
84.n even 6 1 7056.2.a.bp 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.e.a 2 1.a even 1 1 trivial
21.2.e.a 2 7.c even 3 1 inner
63.2.e.b 2 3.b odd 2 1
63.2.e.b 2 21.h odd 6 1
147.2.a.b 1 7.d odd 6 1
147.2.a.c 1 7.c even 3 1
147.2.e.a 2 7.b odd 2 1
147.2.e.a 2 7.d odd 6 1
336.2.q.f 2 4.b odd 2 1
336.2.q.f 2 28.g odd 6 1
441.2.a.a 1 21.g even 6 1
441.2.a.b 1 21.h odd 6 1
441.2.e.e 2 21.c even 2 1
441.2.e.e 2 21.g even 6 1
525.2.i.e 2 5.b even 2 1
525.2.i.e 2 35.j even 6 1
525.2.r.e 4 5.c odd 4 2
525.2.r.e 4 35.l odd 12 2
567.2.g.a 2 9.c even 3 1
567.2.g.a 2 63.h even 3 1
567.2.g.f 2 9.d odd 6 1
567.2.g.f 2 63.j odd 6 1
567.2.h.a 2 9.d odd 6 1
567.2.h.a 2 63.n odd 6 1
567.2.h.f 2 9.c even 3 1
567.2.h.f 2 63.g even 3 1
1008.2.s.d 2 12.b even 2 1
1008.2.s.d 2 84.n even 6 1
1344.2.q.c 2 8.d odd 2 1
1344.2.q.c 2 56.k odd 6 1
1344.2.q.m 2 8.b even 2 1
1344.2.q.m 2 56.p even 6 1
2352.2.a.d 1 28.g odd 6 1
2352.2.a.w 1 28.f even 6 1
2352.2.q.c 2 28.d even 2 1
2352.2.q.c 2 28.f even 6 1
3675.2.a.a 1 35.j even 6 1
3675.2.a.c 1 35.i odd 6 1
7056.2.a.m 1 84.j odd 6 1
7056.2.a.bp 1 84.n even 6 1
9408.2.a.k 1 56.m even 6 1
9408.2.a.bg 1 56.p even 6 1
9408.2.a.bz 1 56.j odd 6 1
9408.2.a.cv 1 56.k odd 6 1

Hecke kernels

This newform subspace is the entire newspace S2new(21,[χ])S_{2}^{\mathrm{new}}(21, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
77 T2+5T+7 T^{2} + 5T + 7 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3131 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
3737 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
4141 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
4343 (T5)2 (T - 5)^{2} Copy content Toggle raw display
4747 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
5353 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
5959 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
6161 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
6767 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
7171 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7373 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
7979 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
8383 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8989 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
9797 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
show more
show less