Properties

Label 9408.2.a.bg
Level $9408$
Weight $2$
Character orbit 9408.a
Self dual yes
Analytic conductor $75.123$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9408,2,Mod(1,9408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1232582216\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + 2 q^{5} + q^{9} + 2 q^{11} - q^{13} - 2 q^{15} - q^{19} - q^{25} - q^{27} - 4 q^{29} + 9 q^{31} - 2 q^{33} - 3 q^{37} + q^{39} - 10 q^{41} - 5 q^{43} + 2 q^{45} - 6 q^{47} - 12 q^{53}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 2.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9408.2.a.bg 1
4.b odd 2 1 9408.2.a.cv 1
7.b odd 2 1 9408.2.a.bz 1
7.c even 3 2 1344.2.q.m 2
8.b even 2 1 147.2.a.c 1
8.d odd 2 1 2352.2.a.d 1
24.f even 2 1 7056.2.a.bp 1
24.h odd 2 1 441.2.a.b 1
28.d even 2 1 9408.2.a.k 1
28.g odd 6 2 1344.2.q.c 2
40.f even 2 1 3675.2.a.a 1
56.e even 2 1 2352.2.a.w 1
56.h odd 2 1 147.2.a.b 1
56.j odd 6 2 147.2.e.a 2
56.k odd 6 2 336.2.q.f 2
56.m even 6 2 2352.2.q.c 2
56.p even 6 2 21.2.e.a 2
168.e odd 2 1 7056.2.a.m 1
168.i even 2 1 441.2.a.a 1
168.s odd 6 2 63.2.e.b 2
168.v even 6 2 1008.2.s.d 2
168.ba even 6 2 441.2.e.e 2
280.c odd 2 1 3675.2.a.c 1
280.bf even 6 2 525.2.i.e 2
280.bt odd 12 4 525.2.r.e 4
504.w even 6 2 567.2.g.a 2
504.bi odd 6 2 567.2.h.a 2
504.cq even 6 2 567.2.h.f 2
504.db odd 6 2 567.2.g.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.e.a 2 56.p even 6 2
63.2.e.b 2 168.s odd 6 2
147.2.a.b 1 56.h odd 2 1
147.2.a.c 1 8.b even 2 1
147.2.e.a 2 56.j odd 6 2
336.2.q.f 2 56.k odd 6 2
441.2.a.a 1 168.i even 2 1
441.2.a.b 1 24.h odd 2 1
441.2.e.e 2 168.ba even 6 2
525.2.i.e 2 280.bf even 6 2
525.2.r.e 4 280.bt odd 12 4
567.2.g.a 2 504.w even 6 2
567.2.g.f 2 504.db odd 6 2
567.2.h.a 2 504.bi odd 6 2
567.2.h.f 2 504.cq even 6 2
1008.2.s.d 2 168.v even 6 2
1344.2.q.c 2 28.g odd 6 2
1344.2.q.m 2 7.c even 3 2
2352.2.a.d 1 8.d odd 2 1
2352.2.a.w 1 56.e even 2 1
2352.2.q.c 2 56.m even 6 2
3675.2.a.a 1 40.f even 2 1
3675.2.a.c 1 280.c odd 2 1
7056.2.a.m 1 168.e odd 2 1
7056.2.a.bp 1 24.f even 2 1
9408.2.a.k 1 28.d even 2 1
9408.2.a.bg 1 1.a even 1 1 trivial
9408.2.a.bz 1 7.b odd 2 1
9408.2.a.cv 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9408))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19} + 1 \) Copy content Toggle raw display
\( T_{31} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 4 \) Copy content Toggle raw display
$31$ \( T - 9 \) Copy content Toggle raw display
$37$ \( T + 3 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T + 5 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 12 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T + 10 \) Copy content Toggle raw display
$67$ \( T - 5 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T + 3 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T - 16 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less