Properties

Label 2-58e2-1.1-c1-0-8
Degree $2$
Conductor $3364$
Sign $1$
Analytic cond. $26.8616$
Root an. cond. $5.18282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.54·3-s + 2.86·5-s − 4.47·7-s + 3.45·9-s + 4.32·11-s − 6.10·13-s − 7.28·15-s + 3.82·17-s − 1.09·19-s + 11.3·21-s − 2.39·23-s + 3.21·25-s − 1.14·27-s − 3.71·31-s − 10.9·33-s − 12.8·35-s + 1.69·37-s + 15.5·39-s + 5.13·41-s − 2.00·43-s + 9.89·45-s − 9.28·47-s + 13.0·49-s − 9.70·51-s + 1.66·53-s + 12.3·55-s + 2.79·57-s + ⋯
L(s)  = 1  − 1.46·3-s + 1.28·5-s − 1.69·7-s + 1.15·9-s + 1.30·11-s − 1.69·13-s − 1.88·15-s + 0.927·17-s − 0.252·19-s + 2.48·21-s − 0.498·23-s + 0.643·25-s − 0.220·27-s − 0.666·31-s − 1.91·33-s − 2.16·35-s + 0.277·37-s + 2.48·39-s + 0.801·41-s − 0.305·43-s + 1.47·45-s − 1.35·47-s + 1.86·49-s − 1.35·51-s + 0.229·53-s + 1.67·55-s + 0.369·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3364 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3364\)    =    \(2^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(26.8616\)
Root analytic conductor: \(5.18282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3364,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8841624552\)
\(L(\frac12)\) \(\approx\) \(0.8841624552\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 \)
good3 \( 1 + 2.54T + 3T^{2} \)
5 \( 1 - 2.86T + 5T^{2} \)
7 \( 1 + 4.47T + 7T^{2} \)
11 \( 1 - 4.32T + 11T^{2} \)
13 \( 1 + 6.10T + 13T^{2} \)
17 \( 1 - 3.82T + 17T^{2} \)
19 \( 1 + 1.09T + 19T^{2} \)
23 \( 1 + 2.39T + 23T^{2} \)
31 \( 1 + 3.71T + 31T^{2} \)
37 \( 1 - 1.69T + 37T^{2} \)
41 \( 1 - 5.13T + 41T^{2} \)
43 \( 1 + 2.00T + 43T^{2} \)
47 \( 1 + 9.28T + 47T^{2} \)
53 \( 1 - 1.66T + 53T^{2} \)
59 \( 1 - 0.0901T + 59T^{2} \)
61 \( 1 - 8.52T + 61T^{2} \)
67 \( 1 + 8.77T + 67T^{2} \)
71 \( 1 - 9.23T + 71T^{2} \)
73 \( 1 - 2.10T + 73T^{2} \)
79 \( 1 - 5.42T + 79T^{2} \)
83 \( 1 + 6.23T + 83T^{2} \)
89 \( 1 + 3.62T + 89T^{2} \)
97 \( 1 - 6.64T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.012985559741126407320724744860, −7.53210742208176878762231083447, −6.68363130941481052388910357206, −6.38008158932146216004270864357, −5.71573406335475620562305462443, −5.12317868111834897608160373855, −4.06165568634943254846381034224, −2.99614549047729554833622527451, −1.88817865617250517774872943937, −0.58985551044840720427710827438, 0.58985551044840720427710827438, 1.88817865617250517774872943937, 2.99614549047729554833622527451, 4.06165568634943254846381034224, 5.12317868111834897608160373855, 5.71573406335475620562305462443, 6.38008158932146216004270864357, 6.68363130941481052388910357206, 7.53210742208176878762231083447, 9.012985559741126407320724744860

Graph of the $Z$-function along the critical line