Properties

Label 3364.2.a.r
Level 33643364
Weight 22
Character orbit 3364.a
Self dual yes
Analytic conductor 26.86226.862
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3364=22292 3364 = 2^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.861675240026.8616752400
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.3266578125.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x710x6+6x5+29x49x325x2x+1 x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β6+β5+β4++1)q3+(β6β52β4+1)q5+(β7+β6+β5+β1)q7+(β7+β6+β4++1)q9++(β72β6β4+4)q99+O(q100) q + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots + 1) q^{3} + ( - \beta_{6} - \beta_{5} - 2 \beta_{4} + \cdots - 1) q^{5} + (\beta_{7} + \beta_{6} + \beta_{5} + \cdots - \beta_1) q^{7} + ( - \beta_{7} + \beta_{6} + \beta_{4} + \cdots + 1) q^{9}+ \cdots + ( - \beta_{7} - 2 \beta_{6} - \beta_{4} + \cdots - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q3q52q7+4q9+5q11+4q1317q15+15q17+11q19+19q213q23+3q25+16q279q3116q33+9q352q37+9q39+11q99+O(q100) 8 q + 4 q^{3} - q^{5} - 2 q^{7} + 4 q^{9} + 5 q^{11} + 4 q^{13} - 17 q^{15} + 15 q^{17} + 11 q^{19} + 19 q^{21} - 3 q^{23} + 3 q^{25} + 16 q^{27} - 9 q^{31} - 16 q^{33} + 9 q^{35} - 2 q^{37} + 9 q^{39}+ \cdots - 11 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x710x6+6x5+29x49x325x2x+1 x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν7ν68ν5+5ν4+14ν311ν24ν+7)/3 ( \nu^{7} - \nu^{6} - 8\nu^{5} + 5\nu^{4} + 14\nu^{3} - 11\nu^{2} - 4\nu + 7 ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν6+ν59ν413ν3+15ν2+25ν+1)/3 ( \nu^{6} + \nu^{5} - 9\nu^{4} - 13\nu^{3} + 15\nu^{2} + 25\nu + 1 ) / 3 Copy content Toggle raw display
β4\beta_{4}== (ν7+ν69ν513ν4+15ν3+28ν2+ν6)/3 ( \nu^{7} + \nu^{6} - 9\nu^{5} - 13\nu^{4} + 15\nu^{3} + 28\nu^{2} + \nu - 6 ) / 3 Copy content Toggle raw display
β5\beta_{5}== (ν72ν69ν5+14ν4+24ν323ν217ν+3)/3 ( \nu^{7} - 2\nu^{6} - 9\nu^{5} + 14\nu^{4} + 24\nu^{3} - 23\nu^{2} - 17\nu + 3 ) / 3 Copy content Toggle raw display
β6\beta_{6}== (ν7ν611ν5+8ν4+35ν317ν231ν+1)/3 ( \nu^{7} - \nu^{6} - 11\nu^{5} + 8\nu^{4} + 35\nu^{3} - 17\nu^{2} - 31\nu + 1 ) / 3 Copy content Toggle raw display
β7\beta_{7}== (2ν7+20ν5+5ν450ν38ν2+30ν4)/3 ( -2\nu^{7} + 20\nu^{5} + 5\nu^{4} - 50\nu^{3} - 8\nu^{2} + 30\nu - 4 ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7+β6+β4+3 \beta_{7} + \beta_{6} + \beta_{4} + 3 Copy content Toggle raw display
ν3\nu^{3}== β7+β6β5+β4β3+β2+4β1+2 \beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} + 4\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== 7β7+8β62β5+6β4+2β2+2β1+16 7\beta_{7} + 8\beta_{6} - 2\beta_{5} + 6\beta_{4} + 2\beta_{2} + 2\beta _1 + 16 Copy content Toggle raw display
ν5\nu^{5}== 12β7+12β69β5+11β47β3+10β2+21β1+22 12\beta_{7} + 12\beta_{6} - 9\beta_{5} + 11\beta_{4} - 7\beta_{3} + 10\beta_{2} + 21\beta _1 + 22 Copy content Toggle raw display
ν6\nu^{6}== 49β7+58β622β5+41β43β3+21β2+24β1+102 49\beta_{7} + 58\beta_{6} - 22\beta_{5} + 41\beta_{4} - 3\beta_{3} + 21\beta_{2} + 24\beta _1 + 102 Copy content Toggle raw display
ν7\nu^{7}== 107β7+111β670β5+96β445β3+80β2+130β1+196 107\beta_{7} + 111\beta_{6} - 70\beta_{5} + 96\beta_{4} - 45\beta_{3} + 80\beta_{2} + 130\beta _1 + 196 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−0.944572
1.58001
0.178891
2.77166
−1.72594
−0.241749
1.51688
−2.13519
0 −2.54007 0 2.86661 0 −4.47762 0 3.45197 0
1.2 0 −0.729419 0 0.767443 0 −2.02171 0 −2.46795 0
1.3 0 −0.498509 0 1.93765 0 0.267484 0 −2.75149 0
1.4 0 −0.243314 0 −3.14638 0 −0.923802 0 −2.94080 0
1.5 0 0.271575 0 0.836327 0 3.75591 0 −2.92625 0
1.6 0 2.21825 0 −0.358466 0 3.12857 0 1.92063 0
1.7 0 2.27574 0 −4.41066 0 −3.82663 0 2.17901 0
1.8 0 3.24575 0 0.507473 0 2.09779 0 7.53487 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
2929 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3364.2.a.r yes 8
29.b even 2 1 3364.2.a.q 8
29.c odd 4 2 3364.2.c.k 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3364.2.a.q 8 29.b even 2 1
3364.2.a.r yes 8 1.a even 1 1 trivial
3364.2.c.k 16 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3364))S_{2}^{\mathrm{new}}(\Gamma_0(3364)):

T384T376T36+32T35T3441T3314T32+3T3+1 T_{3}^{8} - 4T_{3}^{7} - 6T_{3}^{6} + 32T_{3}^{5} - T_{3}^{4} - 41T_{3}^{3} - 14T_{3}^{2} + 3T_{3} + 1 Copy content Toggle raw display
T58+T5721T56+7T55+109T54156T53+51T52+18T59 T_{5}^{8} + T_{5}^{7} - 21T_{5}^{6} + 7T_{5}^{5} + 109T_{5}^{4} - 156T_{5}^{3} + 51T_{5}^{2} + 18T_{5} - 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T84T7++1 T^{8} - 4 T^{7} + \cdots + 1 Copy content Toggle raw display
55 T8+T721T6+9 T^{8} + T^{7} - 21 T^{6} + \cdots - 9 Copy content Toggle raw display
77 T8+2T7++211 T^{8} + 2 T^{7} + \cdots + 211 Copy content Toggle raw display
1111 T85T7++5931 T^{8} - 5 T^{7} + \cdots + 5931 Copy content Toggle raw display
1313 T84T7++20851 T^{8} - 4 T^{7} + \cdots + 20851 Copy content Toggle raw display
1717 T815T7++81 T^{8} - 15 T^{7} + \cdots + 81 Copy content Toggle raw display
1919 T811T7+549 T^{8} - 11 T^{7} + \cdots - 549 Copy content Toggle raw display
2323 T8+3T7+31599 T^{8} + 3 T^{7} + \cdots - 31599 Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8+9T7+134009 T^{8} + 9 T^{7} + \cdots - 134009 Copy content Toggle raw display
3737 T8+2T7++16651 T^{8} + 2 T^{7} + \cdots + 16651 Copy content Toggle raw display
4141 T838T7+1341909 T^{8} - 38 T^{7} + \cdots - 1341909 Copy content Toggle raw display
4343 T8+3T7+8009 T^{8} + 3 T^{7} + \cdots - 8009 Copy content Toggle raw display
4747 T8+7T7++8745291 T^{8} + 7 T^{7} + \cdots + 8745291 Copy content Toggle raw display
5353 T8+5T7++5291775 T^{8} + 5 T^{7} + \cdots + 5291775 Copy content Toggle raw display
5959 T8+7T7+36189 T^{8} + 7 T^{7} + \cdots - 36189 Copy content Toggle raw display
6161 T839T7++15536221 T^{8} - 39 T^{7} + \cdots + 15536221 Copy content Toggle raw display
6767 T8+26T7+4409 T^{8} + 26 T^{7} + \cdots - 4409 Copy content Toggle raw display
7171 T852T7+5139 T^{8} - 52 T^{7} + \cdots - 5139 Copy content Toggle raw display
7373 T8+34T7+744749 T^{8} + 34 T^{7} + \cdots - 744749 Copy content Toggle raw display
7979 T831T7++1438231 T^{8} - 31 T^{7} + \cdots + 1438231 Copy content Toggle raw display
8383 T8+17T7+6356619 T^{8} + 17 T^{7} + \cdots - 6356619 Copy content Toggle raw display
8989 T824T7++1672641 T^{8} - 24 T^{7} + \cdots + 1672641 Copy content Toggle raw display
9797 T822T7++343171 T^{8} - 22 T^{7} + \cdots + 343171 Copy content Toggle raw display
show more
show less