Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3364,2,Mod(1,3364)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3364.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3364.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.8.3266578125.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −2.54007 | 0 | 2.86661 | 0 | −4.47762 | 0 | 3.45197 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | 0 | −0.729419 | 0 | 0.767443 | 0 | −2.02171 | 0 | −2.46795 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | 0 | −0.498509 | 0 | 1.93765 | 0 | 0.267484 | 0 | −2.75149 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | 0 | −0.243314 | 0 | −3.14638 | 0 | −0.923802 | 0 | −2.94080 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | 0 | 0.271575 | 0 | 0.836327 | 0 | 3.75591 | 0 | −2.92625 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 0 | 2.21825 | 0 | −0.358466 | 0 | 3.12857 | 0 | 1.92063 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 0 | 2.27574 | 0 | −4.41066 | 0 | −3.82663 | 0 | 2.17901 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 0 | 3.24575 | 0 | 0.507473 | 0 | 2.09779 | 0 | 7.53487 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3364.2.a.r | yes | 8 |
29.b | even | 2 | 1 | 3364.2.a.q | ✓ | 8 | |
29.c | odd | 4 | 2 | 3364.2.c.k | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3364.2.a.q | ✓ | 8 | 29.b | even | 2 | 1 | |
3364.2.a.r | yes | 8 | 1.a | even | 1 | 1 | trivial |
3364.2.c.k | 16 | 29.c | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|