Properties

Label 3364.2.a.q
Level $3364$
Weight $2$
Character orbit 3364.a
Self dual yes
Analytic conductor $26.862$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.3266578125.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 1) q^{3}+ \cdots + ( - \beta_{7} + \beta_{6} + \beta_{4} + \cdots + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 1) q^{3}+ \cdots + (\beta_{7} + 2 \beta_{6} + \beta_{4} + \cdots + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - q^{5} - 2 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{3} - q^{5} - 2 q^{7} + 4 q^{9} - 5 q^{11} + 4 q^{13} + 17 q^{15} - 15 q^{17} - 11 q^{19} - 19 q^{21} - 3 q^{23} + 3 q^{25} - 16 q^{27} + 9 q^{31} - 16 q^{33} + 9 q^{35} + 2 q^{37} - 9 q^{39} - 38 q^{41} + 3 q^{43} + 3 q^{45} + 7 q^{47} + 12 q^{49} + 3 q^{51} - 5 q^{53} - 34 q^{55} + 34 q^{57} - 7 q^{59} - 39 q^{61} - 6 q^{63} - 21 q^{65} - 26 q^{67} - 34 q^{69} + 52 q^{71} + 34 q^{73} - 10 q^{77} - 31 q^{79} + 24 q^{81} - 17 q^{83} - 18 q^{85} - 24 q^{89} + 54 q^{91} + 6 q^{93} - 9 q^{95} - 22 q^{97} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} - \nu^{6} - 8\nu^{5} + 5\nu^{4} + 14\nu^{3} - 11\nu^{2} - 4\nu + 7 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + \nu^{5} - 9\nu^{4} - 13\nu^{3} + 15\nu^{2} + 25\nu + 1 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} + \nu^{6} - 9\nu^{5} - 13\nu^{4} + 15\nu^{3} + 28\nu^{2} + \nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} - 2\nu^{6} - 9\nu^{5} + 14\nu^{4} + 24\nu^{3} - 23\nu^{2} - 17\nu + 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - \nu^{6} - 11\nu^{5} + 8\nu^{4} + 35\nu^{3} - 17\nu^{2} - 31\nu + 1 ) / 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{7} + 20\nu^{5} + 5\nu^{4} - 50\nu^{3} - 8\nu^{2} + 30\nu - 4 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + \beta_{6} + \beta_{4} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} + 4\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{7} + 8\beta_{6} - 2\beta_{5} + 6\beta_{4} + 2\beta_{2} + 2\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 12\beta_{7} + 12\beta_{6} - 9\beta_{5} + 11\beta_{4} - 7\beta_{3} + 10\beta_{2} + 21\beta _1 + 22 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 49\beta_{7} + 58\beta_{6} - 22\beta_{5} + 41\beta_{4} - 3\beta_{3} + 21\beta_{2} + 24\beta _1 + 102 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 107\beta_{7} + 111\beta_{6} - 70\beta_{5} + 96\beta_{4} - 45\beta_{3} + 80\beta_{2} + 130\beta _1 + 196 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.13519
1.51688
−0.241749
−1.72594
2.77166
0.178891
1.58001
−0.944572
0 −3.24575 0 0.507473 0 2.09779 0 7.53487 0
1.2 0 −2.27574 0 −4.41066 0 −3.82663 0 2.17901 0
1.3 0 −2.21825 0 −0.358466 0 3.12857 0 1.92063 0
1.4 0 −0.271575 0 0.836327 0 3.75591 0 −2.92625 0
1.5 0 0.243314 0 −3.14638 0 −0.923802 0 −2.94080 0
1.6 0 0.498509 0 1.93765 0 0.267484 0 −2.75149 0
1.7 0 0.729419 0 0.767443 0 −2.02171 0 −2.46795 0
1.8 0 2.54007 0 2.86661 0 −4.47762 0 3.45197 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3364.2.a.q 8
29.b even 2 1 3364.2.a.r yes 8
29.c odd 4 2 3364.2.c.k 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3364.2.a.q 8 1.a even 1 1 trivial
3364.2.a.r yes 8 29.b even 2 1
3364.2.c.k 16 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3364))\):

\( T_{3}^{8} + 4T_{3}^{7} - 6T_{3}^{6} - 32T_{3}^{5} - T_{3}^{4} + 41T_{3}^{3} - 14T_{3}^{2} - 3T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} + T_{5}^{7} - 21T_{5}^{6} + 7T_{5}^{5} + 109T_{5}^{4} - 156T_{5}^{3} + 51T_{5}^{2} + 18T_{5} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 4 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} + T^{7} - 21 T^{6} + \cdots - 9 \) Copy content Toggle raw display
$7$ \( T^{8} + 2 T^{7} + \cdots + 211 \) Copy content Toggle raw display
$11$ \( T^{8} + 5 T^{7} + \cdots + 5931 \) Copy content Toggle raw display
$13$ \( T^{8} - 4 T^{7} + \cdots + 20851 \) Copy content Toggle raw display
$17$ \( T^{8} + 15 T^{7} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( T^{8} + 11 T^{7} + \cdots - 549 \) Copy content Toggle raw display
$23$ \( T^{8} + 3 T^{7} + \cdots - 31599 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} - 9 T^{7} + \cdots - 134009 \) Copy content Toggle raw display
$37$ \( T^{8} - 2 T^{7} + \cdots + 16651 \) Copy content Toggle raw display
$41$ \( T^{8} + 38 T^{7} + \cdots - 1341909 \) Copy content Toggle raw display
$43$ \( T^{8} - 3 T^{7} + \cdots - 8009 \) Copy content Toggle raw display
$47$ \( T^{8} - 7 T^{7} + \cdots + 8745291 \) Copy content Toggle raw display
$53$ \( T^{8} + 5 T^{7} + \cdots + 5291775 \) Copy content Toggle raw display
$59$ \( T^{8} + 7 T^{7} + \cdots - 36189 \) Copy content Toggle raw display
$61$ \( T^{8} + 39 T^{7} + \cdots + 15536221 \) Copy content Toggle raw display
$67$ \( T^{8} + 26 T^{7} + \cdots - 4409 \) Copy content Toggle raw display
$71$ \( T^{8} - 52 T^{7} + \cdots - 5139 \) Copy content Toggle raw display
$73$ \( T^{8} - 34 T^{7} + \cdots - 744749 \) Copy content Toggle raw display
$79$ \( T^{8} + 31 T^{7} + \cdots + 1438231 \) Copy content Toggle raw display
$83$ \( T^{8} + 17 T^{7} + \cdots - 6356619 \) Copy content Toggle raw display
$89$ \( T^{8} + 24 T^{7} + \cdots + 1672641 \) Copy content Toggle raw display
$97$ \( T^{8} + 22 T^{7} + \cdots + 343171 \) Copy content Toggle raw display
show more
show less