Properties

Label 2-338-1.1-c9-0-60
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $174.082$
Root an. cond. $13.1940$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 85.7·3-s + 256·4-s − 1.78e3·5-s − 1.37e3·6-s + 751.·7-s − 4.09e3·8-s − 1.23e4·9-s + 2.85e4·10-s − 5.85e4·11-s + 2.19e4·12-s − 1.20e4·14-s − 1.53e5·15-s + 6.55e4·16-s + 2.34e5·17-s + 1.97e5·18-s + 1.03e5·19-s − 4.57e5·20-s + 6.44e4·21-s + 9.36e5·22-s + 1.08e6·23-s − 3.51e5·24-s + 1.24e6·25-s − 2.74e6·27-s + 1.92e5·28-s + 3.17e6·29-s + 2.45e6·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.611·3-s + 0.5·4-s − 1.27·5-s − 0.432·6-s + 0.118·7-s − 0.353·8-s − 0.626·9-s + 0.904·10-s − 1.20·11-s + 0.305·12-s − 0.0837·14-s − 0.781·15-s + 0.250·16-s + 0.681·17-s + 0.442·18-s + 0.181·19-s − 0.639·20-s + 0.0723·21-s + 0.852·22-s + 0.810·23-s − 0.216·24-s + 0.635·25-s − 0.994·27-s + 0.0591·28-s + 0.833·29-s + 0.552·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(174.082\)
Root analytic conductor: \(13.1940\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
13 \( 1 \)
good3 \( 1 - 85.7T + 1.96e4T^{2} \)
5 \( 1 + 1.78e3T + 1.95e6T^{2} \)
7 \( 1 - 751.T + 4.03e7T^{2} \)
11 \( 1 + 5.85e4T + 2.35e9T^{2} \)
17 \( 1 - 2.34e5T + 1.18e11T^{2} \)
19 \( 1 - 1.03e5T + 3.22e11T^{2} \)
23 \( 1 - 1.08e6T + 1.80e12T^{2} \)
29 \( 1 - 3.17e6T + 1.45e13T^{2} \)
31 \( 1 - 6.17e6T + 2.64e13T^{2} \)
37 \( 1 - 1.56e7T + 1.29e14T^{2} \)
41 \( 1 - 2.01e7T + 3.27e14T^{2} \)
43 \( 1 + 2.69e7T + 5.02e14T^{2} \)
47 \( 1 - 3.03e7T + 1.11e15T^{2} \)
53 \( 1 - 6.56e7T + 3.29e15T^{2} \)
59 \( 1 + 1.12e8T + 8.66e15T^{2} \)
61 \( 1 - 2.44e7T + 1.16e16T^{2} \)
67 \( 1 + 1.29e8T + 2.72e16T^{2} \)
71 \( 1 - 1.12e8T + 4.58e16T^{2} \)
73 \( 1 - 1.77e8T + 5.88e16T^{2} \)
79 \( 1 + 6.05e8T + 1.19e17T^{2} \)
83 \( 1 + 2.01e8T + 1.86e17T^{2} \)
89 \( 1 + 8.62e8T + 3.50e17T^{2} \)
97 \( 1 - 2.15e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.402831824429296316092501166065, −8.226532260854490607559335589146, −8.064299139953062536507748264228, −7.13097420311181749944085208068, −5.73250663911486460876144109823, −4.49436849782083243751187883724, −3.18435381333855627256655385649, −2.59811099000145756975991788452, −0.963690754446389215572336137258, 0, 0.963690754446389215572336137258, 2.59811099000145756975991788452, 3.18435381333855627256655385649, 4.49436849782083243751187883724, 5.73250663911486460876144109823, 7.13097420311181749944085208068, 8.064299139953062536507748264228, 8.226532260854490607559335589146, 9.402831824429296316092501166065

Graph of the $Z$-function along the critical line