Properties

Label 338.10.a.e.1.2
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,10,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2119705.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 376x + 1820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-21.0141\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +85.7459 q^{3} +256.000 q^{4} -1787.19 q^{5} -1371.94 q^{6} +751.989 q^{7} -4096.00 q^{8} -12330.6 q^{9} +28595.0 q^{10} -58551.0 q^{11} +21951.0 q^{12} -12031.8 q^{14} -153244. q^{15} +65536.0 q^{16} +234846. q^{17} +197290. q^{18} +103190. q^{19} -457520. q^{20} +64480.0 q^{21} +936816. q^{22} +1.08806e6 q^{23} -351215. q^{24} +1.24092e6 q^{25} -2.74504e6 q^{27} +192509. q^{28} +3.17511e6 q^{29} +2.45191e6 q^{30} +6.17201e6 q^{31} -1.04858e6 q^{32} -5.02051e6 q^{33} -3.75753e6 q^{34} -1.34395e6 q^{35} -3.15664e6 q^{36} +1.56181e7 q^{37} -1.65103e6 q^{38} +7.32032e6 q^{40} +2.01455e7 q^{41} -1.03168e6 q^{42} -2.69024e7 q^{43} -1.49891e7 q^{44} +2.20372e7 q^{45} -1.74089e7 q^{46} +3.03118e7 q^{47} +5.61945e6 q^{48} -3.97881e7 q^{49} -1.98547e7 q^{50} +2.01371e7 q^{51} +6.56149e7 q^{53} +4.39206e7 q^{54} +1.04642e8 q^{55} -3.08015e6 q^{56} +8.84808e6 q^{57} -5.08018e7 q^{58} -1.12025e8 q^{59} -3.92305e7 q^{60} +2.44277e7 q^{61} -9.87522e7 q^{62} -9.27250e6 q^{63} +1.67772e7 q^{64} +8.03282e7 q^{66} -1.29055e8 q^{67} +6.01205e7 q^{68} +9.32967e7 q^{69} +2.15031e7 q^{70} +1.12546e8 q^{71} +5.05063e7 q^{72} +1.77758e8 q^{73} -2.49889e8 q^{74} +1.06404e8 q^{75} +2.64165e7 q^{76} -4.40297e7 q^{77} -6.05015e8 q^{79} -1.17125e8 q^{80} +7.32791e6 q^{81} -3.22328e8 q^{82} -2.01755e8 q^{83} +1.65069e7 q^{84} -4.19714e8 q^{85} +4.30439e8 q^{86} +2.72253e8 q^{87} +2.39825e8 q^{88} -8.62460e8 q^{89} -3.52595e8 q^{90} +2.78543e8 q^{92} +5.29225e8 q^{93} -4.84989e8 q^{94} -1.84419e8 q^{95} -8.99111e7 q^{96} +2.15081e8 q^{97} +6.36610e8 q^{98} +7.21971e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 156 q^{3} + 768 q^{4} + 1272 q^{5} - 2496 q^{6} - 17058 q^{7} - 12288 q^{8} + 42273 q^{9} - 20352 q^{10} - 73974 q^{11} + 39936 q^{12} + 272928 q^{14} - 393756 q^{15} + 196608 q^{16} + 374976 q^{17}+ \cdots + 2480087466 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 85.7459 0.611178 0.305589 0.952163i \(-0.401147\pi\)
0.305589 + 0.952163i \(0.401147\pi\)
\(4\) 256.000 0.500000
\(5\) −1787.19 −1.27881 −0.639404 0.768871i \(-0.720819\pi\)
−0.639404 + 0.768871i \(0.720819\pi\)
\(6\) −1371.94 −0.432168
\(7\) 751.989 0.118378 0.0591889 0.998247i \(-0.481149\pi\)
0.0591889 + 0.998247i \(0.481149\pi\)
\(8\) −4096.00 −0.353553
\(9\) −12330.6 −0.626461
\(10\) 28595.0 0.904254
\(11\) −58551.0 −1.20578 −0.602889 0.797825i \(-0.705984\pi\)
−0.602889 + 0.797825i \(0.705984\pi\)
\(12\) 21951.0 0.305589
\(13\) 0 0
\(14\) −12031.8 −0.0837057
\(15\) −153244. −0.781580
\(16\) 65536.0 0.250000
\(17\) 234846. 0.681966 0.340983 0.940069i \(-0.389240\pi\)
0.340983 + 0.940069i \(0.389240\pi\)
\(18\) 197290. 0.442975
\(19\) 103190. 0.181654 0.0908269 0.995867i \(-0.471049\pi\)
0.0908269 + 0.995867i \(0.471049\pi\)
\(20\) −457520. −0.639404
\(21\) 64480.0 0.0723499
\(22\) 936816. 0.852614
\(23\) 1.08806e6 0.810732 0.405366 0.914154i \(-0.367144\pi\)
0.405366 + 0.914154i \(0.367144\pi\)
\(24\) −351215. −0.216084
\(25\) 1.24092e6 0.635350
\(26\) 0 0
\(27\) −2.74504e6 −0.994058
\(28\) 192509. 0.0591889
\(29\) 3.17511e6 0.833620 0.416810 0.908994i \(-0.363148\pi\)
0.416810 + 0.908994i \(0.363148\pi\)
\(30\) 2.45191e6 0.552660
\(31\) 6.17201e6 1.20033 0.600163 0.799878i \(-0.295102\pi\)
0.600163 + 0.799878i \(0.295102\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −5.02051e6 −0.736945
\(34\) −3.75753e6 −0.482223
\(35\) −1.34395e6 −0.151382
\(36\) −3.15664e6 −0.313231
\(37\) 1.56181e7 1.37000 0.684998 0.728545i \(-0.259803\pi\)
0.684998 + 0.728545i \(0.259803\pi\)
\(38\) −1.65103e6 −0.128449
\(39\) 0 0
\(40\) 7.32032e6 0.452127
\(41\) 2.01455e7 1.11340 0.556700 0.830714i \(-0.312067\pi\)
0.556700 + 0.830714i \(0.312067\pi\)
\(42\) −1.03168e6 −0.0511591
\(43\) −2.69024e7 −1.20001 −0.600003 0.799998i \(-0.704834\pi\)
−0.600003 + 0.799998i \(0.704834\pi\)
\(44\) −1.49891e7 −0.602889
\(45\) 2.20372e7 0.801123
\(46\) −1.74089e7 −0.573274
\(47\) 3.03118e7 0.906090 0.453045 0.891488i \(-0.350338\pi\)
0.453045 + 0.891488i \(0.350338\pi\)
\(48\) 5.61945e6 0.152795
\(49\) −3.97881e7 −0.985987
\(50\) −1.98547e7 −0.449260
\(51\) 2.01371e7 0.416803
\(52\) 0 0
\(53\) 6.56149e7 1.14225 0.571125 0.820863i \(-0.306507\pi\)
0.571125 + 0.820863i \(0.306507\pi\)
\(54\) 4.39206e7 0.702905
\(55\) 1.04642e8 1.54196
\(56\) −3.08015e6 −0.0418529
\(57\) 8.84808e6 0.111023
\(58\) −5.08018e7 −0.589459
\(59\) −1.12025e8 −1.20359 −0.601796 0.798650i \(-0.705548\pi\)
−0.601796 + 0.798650i \(0.705548\pi\)
\(60\) −3.92305e7 −0.390790
\(61\) 2.44277e7 0.225891 0.112945 0.993601i \(-0.463971\pi\)
0.112945 + 0.993601i \(0.463971\pi\)
\(62\) −9.87522e7 −0.848759
\(63\) −9.27250e6 −0.0741591
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 8.03282e7 0.521099
\(67\) −1.29055e8 −0.782419 −0.391209 0.920302i \(-0.627943\pi\)
−0.391209 + 0.920302i \(0.627943\pi\)
\(68\) 6.01205e7 0.340983
\(69\) 9.32967e7 0.495502
\(70\) 2.15031e7 0.107044
\(71\) 1.12546e8 0.525616 0.262808 0.964848i \(-0.415351\pi\)
0.262808 + 0.964848i \(0.415351\pi\)
\(72\) 5.05063e7 0.221487
\(73\) 1.77758e8 0.732617 0.366308 0.930493i \(-0.380622\pi\)
0.366308 + 0.930493i \(0.380622\pi\)
\(74\) −2.49889e8 −0.968733
\(75\) 1.06404e8 0.388312
\(76\) 2.64165e7 0.0908269
\(77\) −4.40297e7 −0.142737
\(78\) 0 0
\(79\) −6.05015e8 −1.74761 −0.873805 0.486277i \(-0.838355\pi\)
−0.873805 + 0.486277i \(0.838355\pi\)
\(80\) −1.17125e8 −0.319702
\(81\) 7.32791e6 0.0189146
\(82\) −3.22328e8 −0.787293
\(83\) −2.01755e8 −0.466630 −0.233315 0.972401i \(-0.574957\pi\)
−0.233315 + 0.972401i \(0.574957\pi\)
\(84\) 1.65069e7 0.0361750
\(85\) −4.19714e8 −0.872103
\(86\) 4.30439e8 0.848532
\(87\) 2.72253e8 0.509491
\(88\) 2.39825e8 0.426307
\(89\) −8.62460e8 −1.45708 −0.728541 0.685002i \(-0.759801\pi\)
−0.728541 + 0.685002i \(0.759801\pi\)
\(90\) −3.52595e8 −0.566480
\(91\) 0 0
\(92\) 2.78543e8 0.405366
\(93\) 5.29225e8 0.733613
\(94\) −4.84989e8 −0.640702
\(95\) −1.84419e8 −0.232300
\(96\) −8.99111e7 −0.108042
\(97\) 2.15081e8 0.246677 0.123339 0.992365i \(-0.460640\pi\)
0.123339 + 0.992365i \(0.460640\pi\)
\(98\) 6.36610e8 0.697198
\(99\) 7.21971e8 0.755373
\(100\) 3.17675e8 0.317675
\(101\) 8.80961e8 0.842385 0.421192 0.906971i \(-0.361612\pi\)
0.421192 + 0.906971i \(0.361612\pi\)
\(102\) −3.22193e8 −0.294724
\(103\) −1.67438e9 −1.46584 −0.732918 0.680317i \(-0.761842\pi\)
−0.732918 + 0.680317i \(0.761842\pi\)
\(104\) 0 0
\(105\) −1.15238e8 −0.0925217
\(106\) −1.04984e9 −0.807692
\(107\) −3.53576e8 −0.260769 −0.130385 0.991463i \(-0.541621\pi\)
−0.130385 + 0.991463i \(0.541621\pi\)
\(108\) −7.02730e8 −0.497029
\(109\) −1.69143e9 −1.14772 −0.573858 0.818955i \(-0.694554\pi\)
−0.573858 + 0.818955i \(0.694554\pi\)
\(110\) −1.67427e9 −1.09033
\(111\) 1.33918e9 0.837312
\(112\) 4.92823e7 0.0295944
\(113\) 2.01468e9 1.16239 0.581196 0.813763i \(-0.302585\pi\)
0.581196 + 0.813763i \(0.302585\pi\)
\(114\) −1.41569e8 −0.0785050
\(115\) −1.94457e9 −1.03677
\(116\) 8.12829e8 0.416810
\(117\) 0 0
\(118\) 1.79239e9 0.851067
\(119\) 1.76601e8 0.0807296
\(120\) 6.27688e8 0.276330
\(121\) 1.07027e9 0.453901
\(122\) −3.90843e8 −0.159729
\(123\) 1.72740e9 0.680486
\(124\) 1.58004e9 0.600163
\(125\) 1.27285e9 0.466317
\(126\) 1.48360e8 0.0524384
\(127\) −3.44437e8 −0.117488 −0.0587439 0.998273i \(-0.518710\pi\)
−0.0587439 + 0.998273i \(0.518710\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −2.30677e9 −0.733418
\(130\) 0 0
\(131\) −1.13152e9 −0.335692 −0.167846 0.985813i \(-0.553681\pi\)
−0.167846 + 0.985813i \(0.553681\pi\)
\(132\) −1.28525e9 −0.368473
\(133\) 7.75974e7 0.0215038
\(134\) 2.06488e9 0.553253
\(135\) 4.90590e9 1.27121
\(136\) −9.61928e8 −0.241111
\(137\) 1.20622e8 0.0292540 0.0146270 0.999893i \(-0.495344\pi\)
0.0146270 + 0.999893i \(0.495344\pi\)
\(138\) −1.49275e9 −0.350373
\(139\) 5.00754e9 1.13778 0.568889 0.822414i \(-0.307373\pi\)
0.568889 + 0.822414i \(0.307373\pi\)
\(140\) −3.44050e8 −0.0756912
\(141\) 2.59911e9 0.553782
\(142\) −1.80074e9 −0.371667
\(143\) 0 0
\(144\) −8.08100e8 −0.156615
\(145\) −5.67453e9 −1.06604
\(146\) −2.84413e9 −0.518038
\(147\) −3.41167e9 −0.602614
\(148\) 3.99822e9 0.684998
\(149\) 8.79381e9 1.46164 0.730818 0.682573i \(-0.239139\pi\)
0.730818 + 0.682573i \(0.239139\pi\)
\(150\) −1.70246e9 −0.274578
\(151\) 1.89322e9 0.296350 0.148175 0.988961i \(-0.452660\pi\)
0.148175 + 0.988961i \(0.452660\pi\)
\(152\) −4.22664e8 −0.0642243
\(153\) −2.89580e9 −0.427225
\(154\) 7.04475e8 0.100931
\(155\) −1.10306e10 −1.53499
\(156\) 0 0
\(157\) 1.42967e10 1.87797 0.938984 0.343961i \(-0.111769\pi\)
0.938984 + 0.343961i \(0.111769\pi\)
\(158\) 9.68024e9 1.23575
\(159\) 5.62621e9 0.698118
\(160\) 1.87400e9 0.226063
\(161\) 8.18208e8 0.0959726
\(162\) −1.17247e8 −0.0133747
\(163\) −1.35312e10 −1.50139 −0.750694 0.660650i \(-0.770281\pi\)
−0.750694 + 0.660650i \(0.770281\pi\)
\(164\) 5.15725e9 0.556700
\(165\) 8.97260e9 0.942412
\(166\) 3.22808e9 0.329957
\(167\) 8.67633e9 0.863201 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(168\) −2.64110e8 −0.0255796
\(169\) 0 0
\(170\) 6.71542e9 0.616670
\(171\) −1.27239e9 −0.113799
\(172\) −6.88702e9 −0.600003
\(173\) 2.02999e10 1.72301 0.861504 0.507750i \(-0.169523\pi\)
0.861504 + 0.507750i \(0.169523\pi\)
\(174\) −4.35605e9 −0.360264
\(175\) 9.33156e8 0.0752113
\(176\) −3.83720e9 −0.301445
\(177\) −9.60565e9 −0.735609
\(178\) 1.37994e10 1.03031
\(179\) −1.08759e10 −0.791817 −0.395908 0.918290i \(-0.629570\pi\)
−0.395908 + 0.918290i \(0.629570\pi\)
\(180\) 5.64151e9 0.400562
\(181\) 1.52561e10 1.05655 0.528275 0.849073i \(-0.322839\pi\)
0.528275 + 0.849073i \(0.322839\pi\)
\(182\) 0 0
\(183\) 2.09458e9 0.138060
\(184\) −4.45669e9 −0.286637
\(185\) −2.79124e10 −1.75196
\(186\) −8.46760e9 −0.518743
\(187\) −1.37505e10 −0.822300
\(188\) 7.75982e9 0.453045
\(189\) −2.06424e9 −0.117674
\(190\) 2.95071e9 0.164261
\(191\) 1.20771e9 0.0656616 0.0328308 0.999461i \(-0.489548\pi\)
0.0328308 + 0.999461i \(0.489548\pi\)
\(192\) 1.43858e9 0.0763973
\(193\) −1.46443e10 −0.759730 −0.379865 0.925042i \(-0.624030\pi\)
−0.379865 + 0.925042i \(0.624030\pi\)
\(194\) −3.44129e9 −0.174427
\(195\) 0 0
\(196\) −1.01858e10 −0.492993
\(197\) −3.80476e10 −1.79982 −0.899911 0.436075i \(-0.856368\pi\)
−0.899911 + 0.436075i \(0.856368\pi\)
\(198\) −1.15515e10 −0.534129
\(199\) −2.69086e10 −1.21633 −0.608166 0.793810i \(-0.708095\pi\)
−0.608166 + 0.793810i \(0.708095\pi\)
\(200\) −5.08280e9 −0.224630
\(201\) −1.10660e10 −0.478197
\(202\) −1.40954e10 −0.595656
\(203\) 2.38765e9 0.0986821
\(204\) 5.15509e9 0.208401
\(205\) −3.60038e10 −1.42382
\(206\) 2.67900e10 1.03650
\(207\) −1.34165e10 −0.507892
\(208\) 0 0
\(209\) −6.04185e9 −0.219034
\(210\) 1.84381e9 0.0654227
\(211\) −2.87876e10 −0.999849 −0.499925 0.866069i \(-0.666639\pi\)
−0.499925 + 0.866069i \(0.666639\pi\)
\(212\) 1.67974e10 0.571125
\(213\) 9.65038e9 0.321245
\(214\) 5.65722e9 0.184392
\(215\) 4.80797e10 1.53458
\(216\) 1.12437e10 0.351452
\(217\) 4.64129e9 0.142092
\(218\) 2.70628e10 0.811557
\(219\) 1.52420e10 0.447760
\(220\) 2.67883e10 0.770979
\(221\) 0 0
\(222\) −2.14270e10 −0.592069
\(223\) −5.58460e10 −1.51224 −0.756120 0.654433i \(-0.772907\pi\)
−0.756120 + 0.654433i \(0.772907\pi\)
\(224\) −7.88517e8 −0.0209264
\(225\) −1.53013e10 −0.398022
\(226\) −3.22349e10 −0.821936
\(227\) 2.12255e10 0.530567 0.265284 0.964170i \(-0.414534\pi\)
0.265284 + 0.964170i \(0.414534\pi\)
\(228\) 2.26511e9 0.0555114
\(229\) −5.16671e10 −1.24152 −0.620761 0.784000i \(-0.713176\pi\)
−0.620761 + 0.784000i \(0.713176\pi\)
\(230\) 3.11131e10 0.733107
\(231\) −3.77537e9 −0.0872380
\(232\) −1.30053e10 −0.294729
\(233\) −6.99428e10 −1.55468 −0.777341 0.629080i \(-0.783432\pi\)
−0.777341 + 0.629080i \(0.783432\pi\)
\(234\) 0 0
\(235\) −5.41729e10 −1.15871
\(236\) −2.86783e10 −0.601796
\(237\) −5.18776e10 −1.06810
\(238\) −2.82562e9 −0.0570845
\(239\) −9.50597e10 −1.88454 −0.942271 0.334850i \(-0.891314\pi\)
−0.942271 + 0.334850i \(0.891314\pi\)
\(240\) −1.00430e10 −0.195395
\(241\) −5.96117e10 −1.13829 −0.569147 0.822235i \(-0.692727\pi\)
−0.569147 + 0.822235i \(0.692727\pi\)
\(242\) −1.71244e10 −0.320956
\(243\) 5.46589e10 1.00562
\(244\) 6.25349e9 0.112945
\(245\) 7.11089e10 1.26089
\(246\) −2.76383e10 −0.481176
\(247\) 0 0
\(248\) −2.52806e10 −0.424379
\(249\) −1.72997e10 −0.285194
\(250\) −2.03656e10 −0.329736
\(251\) −6.63592e10 −1.05528 −0.527642 0.849467i \(-0.676924\pi\)
−0.527642 + 0.849467i \(0.676924\pi\)
\(252\) −2.37376e9 −0.0370795
\(253\) −6.37070e10 −0.977563
\(254\) 5.51098e9 0.0830764
\(255\) −3.59887e10 −0.533011
\(256\) 4.29497e9 0.0625000
\(257\) −3.60015e10 −0.514779 −0.257390 0.966308i \(-0.582862\pi\)
−0.257390 + 0.966308i \(0.582862\pi\)
\(258\) 3.69084e10 0.518605
\(259\) 1.17446e10 0.162177
\(260\) 0 0
\(261\) −3.91512e10 −0.522231
\(262\) 1.81043e10 0.237370
\(263\) 5.53571e10 0.713465 0.356732 0.934207i \(-0.383891\pi\)
0.356732 + 0.934207i \(0.383891\pi\)
\(264\) 2.05640e10 0.260550
\(265\) −1.17266e11 −1.46072
\(266\) −1.24156e9 −0.0152055
\(267\) −7.39525e10 −0.890537
\(268\) −3.30381e10 −0.391209
\(269\) 9.87231e10 1.14956 0.574782 0.818306i \(-0.305087\pi\)
0.574782 + 0.818306i \(0.305087\pi\)
\(270\) −7.84944e10 −0.898880
\(271\) 1.57825e11 1.77752 0.888760 0.458372i \(-0.151567\pi\)
0.888760 + 0.458372i \(0.151567\pi\)
\(272\) 1.53909e10 0.170491
\(273\) 0 0
\(274\) −1.92996e9 −0.0206857
\(275\) −7.26570e10 −0.766091
\(276\) 2.38839e10 0.247751
\(277\) 2.52506e10 0.257700 0.128850 0.991664i \(-0.458872\pi\)
0.128850 + 0.991664i \(0.458872\pi\)
\(278\) −8.01206e10 −0.804530
\(279\) −7.61049e10 −0.751958
\(280\) 5.50480e9 0.0535218
\(281\) 7.44249e10 0.712098 0.356049 0.934467i \(-0.384124\pi\)
0.356049 + 0.934467i \(0.384124\pi\)
\(282\) −4.15858e10 −0.391583
\(283\) −1.08399e11 −1.00458 −0.502291 0.864699i \(-0.667509\pi\)
−0.502291 + 0.864699i \(0.667509\pi\)
\(284\) 2.88118e10 0.262808
\(285\) −1.58132e10 −0.141977
\(286\) 0 0
\(287\) 1.51492e10 0.131802
\(288\) 1.29296e10 0.110744
\(289\) −6.34353e10 −0.534922
\(290\) 9.07924e10 0.753804
\(291\) 1.84423e10 0.150764
\(292\) 4.55061e10 0.366308
\(293\) −4.84627e10 −0.384152 −0.192076 0.981380i \(-0.561522\pi\)
−0.192076 + 0.981380i \(0.561522\pi\)
\(294\) 5.45867e10 0.426112
\(295\) 2.00209e11 1.53916
\(296\) −6.39716e10 −0.484367
\(297\) 1.60725e11 1.19861
\(298\) −1.40701e11 −1.03353
\(299\) 0 0
\(300\) 2.72393e10 0.194156
\(301\) −2.02303e10 −0.142054
\(302\) −3.02915e10 −0.209551
\(303\) 7.55388e10 0.514847
\(304\) 6.76263e9 0.0454134
\(305\) −4.36569e10 −0.288871
\(306\) 4.63328e10 0.302094
\(307\) 8.71117e10 0.559698 0.279849 0.960044i \(-0.409716\pi\)
0.279849 + 0.960044i \(0.409716\pi\)
\(308\) −1.12716e10 −0.0713687
\(309\) −1.43571e11 −0.895887
\(310\) 1.76489e11 1.08540
\(311\) −1.81111e10 −0.109780 −0.0548900 0.998492i \(-0.517481\pi\)
−0.0548900 + 0.998492i \(0.517481\pi\)
\(312\) 0 0
\(313\) −2.50444e11 −1.47490 −0.737449 0.675403i \(-0.763970\pi\)
−0.737449 + 0.675403i \(0.763970\pi\)
\(314\) −2.28748e11 −1.32792
\(315\) 1.65717e10 0.0948352
\(316\) −1.54884e11 −0.873805
\(317\) 1.62467e11 0.903644 0.451822 0.892108i \(-0.350774\pi\)
0.451822 + 0.892108i \(0.350774\pi\)
\(318\) −9.00193e10 −0.493644
\(319\) −1.85906e11 −1.00516
\(320\) −2.99840e10 −0.159851
\(321\) −3.03177e10 −0.159376
\(322\) −1.30913e10 −0.0678629
\(323\) 2.42336e10 0.123882
\(324\) 1.87595e9 0.00945731
\(325\) 0 0
\(326\) 2.16500e11 1.06164
\(327\) −1.45033e11 −0.701459
\(328\) −8.25161e10 −0.393646
\(329\) 2.27941e10 0.107261
\(330\) −1.43562e11 −0.666386
\(331\) 6.54231e10 0.299575 0.149787 0.988718i \(-0.452141\pi\)
0.149787 + 0.988718i \(0.452141\pi\)
\(332\) −5.16492e10 −0.233315
\(333\) −1.92581e11 −0.858249
\(334\) −1.38821e11 −0.610375
\(335\) 2.30646e11 1.00056
\(336\) 4.22576e9 0.0180875
\(337\) −8.37766e10 −0.353825 −0.176912 0.984227i \(-0.556611\pi\)
−0.176912 + 0.984227i \(0.556611\pi\)
\(338\) 0 0
\(339\) 1.72751e11 0.710429
\(340\) −1.07447e11 −0.436052
\(341\) −3.61378e11 −1.44733
\(342\) 2.03583e10 0.0804681
\(343\) −6.02657e10 −0.235097
\(344\) 1.10192e11 0.424266
\(345\) −1.66739e11 −0.633652
\(346\) −3.24799e11 −1.21835
\(347\) 5.18275e11 1.91901 0.959506 0.281689i \(-0.0908946\pi\)
0.959506 + 0.281689i \(0.0908946\pi\)
\(348\) 6.96968e10 0.254745
\(349\) −2.77982e11 −1.00300 −0.501502 0.865157i \(-0.667219\pi\)
−0.501502 + 0.865157i \(0.667219\pi\)
\(350\) −1.49305e10 −0.0531824
\(351\) 0 0
\(352\) 6.13952e10 0.213153
\(353\) 1.60940e11 0.551669 0.275835 0.961205i \(-0.411046\pi\)
0.275835 + 0.961205i \(0.411046\pi\)
\(354\) 1.53690e11 0.520154
\(355\) −2.01141e11 −0.672162
\(356\) −2.20790e11 −0.728541
\(357\) 1.51429e10 0.0493402
\(358\) 1.74014e11 0.559899
\(359\) 1.45229e11 0.461455 0.230728 0.973018i \(-0.425889\pi\)
0.230728 + 0.973018i \(0.425889\pi\)
\(360\) −9.02642e10 −0.283240
\(361\) −3.12040e11 −0.967002
\(362\) −2.44098e11 −0.747094
\(363\) 9.17717e10 0.277414
\(364\) 0 0
\(365\) −3.17688e11 −0.936876
\(366\) −3.35132e10 −0.0976228
\(367\) −5.88415e11 −1.69311 −0.846557 0.532298i \(-0.821329\pi\)
−0.846557 + 0.532298i \(0.821329\pi\)
\(368\) 7.13071e10 0.202683
\(369\) −2.48407e11 −0.697502
\(370\) 4.46599e11 1.23882
\(371\) 4.93416e10 0.135217
\(372\) 1.35482e11 0.366807
\(373\) 2.92744e11 0.783065 0.391533 0.920164i \(-0.371945\pi\)
0.391533 + 0.920164i \(0.371945\pi\)
\(374\) 2.20007e11 0.581454
\(375\) 1.09142e11 0.285003
\(376\) −1.24157e11 −0.320351
\(377\) 0 0
\(378\) 3.30278e10 0.0832083
\(379\) −1.16451e11 −0.289912 −0.144956 0.989438i \(-0.546304\pi\)
−0.144956 + 0.989438i \(0.546304\pi\)
\(380\) −4.72113e10 −0.116150
\(381\) −2.95340e10 −0.0718059
\(382\) −1.93233e10 −0.0464298
\(383\) 3.18071e11 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(384\) −2.30173e10 −0.0540210
\(385\) 7.86894e10 0.182534
\(386\) 2.34308e11 0.537210
\(387\) 3.31724e11 0.751757
\(388\) 5.50607e10 0.123339
\(389\) −1.88045e11 −0.416379 −0.208190 0.978088i \(-0.566757\pi\)
−0.208190 + 0.978088i \(0.566757\pi\)
\(390\) 0 0
\(391\) 2.55526e11 0.552892
\(392\) 1.62972e11 0.348599
\(393\) −9.70231e10 −0.205168
\(394\) 6.08762e11 1.27267
\(395\) 1.08128e12 2.23486
\(396\) 1.84825e11 0.377687
\(397\) 8.16657e11 1.64999 0.824997 0.565137i \(-0.191177\pi\)
0.824997 + 0.565137i \(0.191177\pi\)
\(398\) 4.30538e11 0.860077
\(399\) 6.65366e9 0.0131426
\(400\) 8.13248e10 0.158837
\(401\) −9.64580e11 −1.86290 −0.931448 0.363875i \(-0.881454\pi\)
−0.931448 + 0.363875i \(0.881454\pi\)
\(402\) 1.77055e11 0.338136
\(403\) 0 0
\(404\) 2.25526e11 0.421192
\(405\) −1.30964e10 −0.0241882
\(406\) −3.82024e10 −0.0697788
\(407\) −9.14453e11 −1.65191
\(408\) −8.24815e10 −0.147362
\(409\) −4.92782e11 −0.870763 −0.435381 0.900246i \(-0.643386\pi\)
−0.435381 + 0.900246i \(0.643386\pi\)
\(410\) 5.76061e11 1.00680
\(411\) 1.03429e10 0.0178794
\(412\) −4.28640e11 −0.732918
\(413\) −8.42412e10 −0.142478
\(414\) 2.14663e11 0.359134
\(415\) 3.60574e11 0.596730
\(416\) 0 0
\(417\) 4.29376e11 0.695385
\(418\) 9.66696e10 0.154881
\(419\) 1.06792e11 0.169268 0.0846338 0.996412i \(-0.473028\pi\)
0.0846338 + 0.996412i \(0.473028\pi\)
\(420\) −2.95009e10 −0.0462608
\(421\) 9.06902e10 0.140699 0.0703495 0.997522i \(-0.477589\pi\)
0.0703495 + 0.997522i \(0.477589\pi\)
\(422\) 4.60602e11 0.707000
\(423\) −3.73764e11 −0.567630
\(424\) −2.68758e11 −0.403846
\(425\) 2.91424e11 0.433287
\(426\) −1.54406e11 −0.227155
\(427\) 1.83694e10 0.0267404
\(428\) −9.05155e10 −0.130385
\(429\) 0 0
\(430\) −7.69275e11 −1.08511
\(431\) −5.39153e11 −0.752600 −0.376300 0.926498i \(-0.622804\pi\)
−0.376300 + 0.926498i \(0.622804\pi\)
\(432\) −1.79899e11 −0.248514
\(433\) 4.68512e11 0.640509 0.320254 0.947332i \(-0.396232\pi\)
0.320254 + 0.947332i \(0.396232\pi\)
\(434\) −7.42606e10 −0.100474
\(435\) −4.86568e11 −0.651541
\(436\) −4.33005e11 −0.573858
\(437\) 1.12276e11 0.147273
\(438\) −2.43873e11 −0.316614
\(439\) 3.60014e11 0.462624 0.231312 0.972880i \(-0.425698\pi\)
0.231312 + 0.972880i \(0.425698\pi\)
\(440\) −4.28612e11 −0.545165
\(441\) 4.90613e11 0.617682
\(442\) 0 0
\(443\) 1.35127e12 1.66697 0.833483 0.552546i \(-0.186344\pi\)
0.833483 + 0.552546i \(0.186344\pi\)
\(444\) 3.42831e11 0.418656
\(445\) 1.54138e12 1.86333
\(446\) 8.93537e11 1.06931
\(447\) 7.54034e11 0.893320
\(448\) 1.26163e10 0.0147972
\(449\) −1.10673e12 −1.28509 −0.642547 0.766246i \(-0.722122\pi\)
−0.642547 + 0.766246i \(0.722122\pi\)
\(450\) 2.44821e11 0.281444
\(451\) −1.17954e12 −1.34251
\(452\) 5.15758e11 0.581196
\(453\) 1.62336e11 0.181123
\(454\) −3.39607e11 −0.375168
\(455\) 0 0
\(456\) −3.62417e10 −0.0392525
\(457\) 1.50037e12 1.60908 0.804538 0.593901i \(-0.202413\pi\)
0.804538 + 0.593901i \(0.202413\pi\)
\(458\) 8.26673e11 0.877888
\(459\) −6.44661e11 −0.677913
\(460\) −4.97809e11 −0.518385
\(461\) −1.25558e12 −1.29476 −0.647382 0.762166i \(-0.724136\pi\)
−0.647382 + 0.762166i \(0.724136\pi\)
\(462\) 6.04059e10 0.0616866
\(463\) 4.59412e11 0.464610 0.232305 0.972643i \(-0.425373\pi\)
0.232305 + 0.972643i \(0.425373\pi\)
\(464\) 2.08084e11 0.208405
\(465\) −9.45825e11 −0.938151
\(466\) 1.11909e12 1.09933
\(467\) −1.97470e12 −1.92121 −0.960605 0.277917i \(-0.910356\pi\)
−0.960605 + 0.277917i \(0.910356\pi\)
\(468\) 0 0
\(469\) −9.70481e10 −0.0926210
\(470\) 8.66766e11 0.819335
\(471\) 1.22589e12 1.14777
\(472\) 4.58852e11 0.425534
\(473\) 1.57516e12 1.44694
\(474\) 8.30042e11 0.755261
\(475\) 1.28050e11 0.115414
\(476\) 4.52100e10 0.0403648
\(477\) −8.09073e11 −0.715575
\(478\) 1.52096e12 1.33257
\(479\) −1.97850e12 −1.71723 −0.858613 0.512625i \(-0.828673\pi\)
−0.858613 + 0.512625i \(0.828673\pi\)
\(480\) 1.60688e11 0.138165
\(481\) 0 0
\(482\) 9.53787e11 0.804896
\(483\) 7.01580e10 0.0586564
\(484\) 2.73990e11 0.226950
\(485\) −3.84390e11 −0.315453
\(486\) −8.74543e11 −0.711079
\(487\) −8.70430e11 −0.701219 −0.350609 0.936522i \(-0.614026\pi\)
−0.350609 + 0.936522i \(0.614026\pi\)
\(488\) −1.00056e11 −0.0798644
\(489\) −1.16025e12 −0.917616
\(490\) −1.13774e12 −0.891582
\(491\) −9.15629e11 −0.710973 −0.355486 0.934681i \(-0.615685\pi\)
−0.355486 + 0.934681i \(0.615685\pi\)
\(492\) 4.42214e11 0.340243
\(493\) 7.45662e11 0.568501
\(494\) 0 0
\(495\) −1.29030e12 −0.965977
\(496\) 4.04489e11 0.300082
\(497\) 8.46335e10 0.0622212
\(498\) 2.76795e11 0.201663
\(499\) 1.04001e12 0.750906 0.375453 0.926841i \(-0.377487\pi\)
0.375453 + 0.926841i \(0.377487\pi\)
\(500\) 3.25849e11 0.233159
\(501\) 7.43960e11 0.527570
\(502\) 1.06175e12 0.746198
\(503\) 1.96238e11 0.136687 0.0683435 0.997662i \(-0.478229\pi\)
0.0683435 + 0.997662i \(0.478229\pi\)
\(504\) 3.79802e10 0.0262192
\(505\) −1.57444e12 −1.07725
\(506\) 1.01931e12 0.691241
\(507\) 0 0
\(508\) −8.81758e10 −0.0587439
\(509\) 9.33446e11 0.616395 0.308197 0.951322i \(-0.400274\pi\)
0.308197 + 0.951322i \(0.400274\pi\)
\(510\) 5.75820e11 0.376895
\(511\) 1.33672e11 0.0867256
\(512\) −6.87195e10 −0.0441942
\(513\) −2.83259e11 −0.180574
\(514\) 5.76023e11 0.364004
\(515\) 2.99243e12 1.87452
\(516\) −5.90534e11 −0.366709
\(517\) −1.77479e12 −1.09254
\(518\) −1.87914e11 −0.114676
\(519\) 1.74064e12 1.05307
\(520\) 0 0
\(521\) −2.60930e12 −1.55151 −0.775754 0.631036i \(-0.782630\pi\)
−0.775754 + 0.631036i \(0.782630\pi\)
\(522\) 6.26419e11 0.369273
\(523\) 1.76867e12 1.03368 0.516842 0.856081i \(-0.327107\pi\)
0.516842 + 0.856081i \(0.327107\pi\)
\(524\) −2.89669e11 −0.167846
\(525\) 8.00144e10 0.0459675
\(526\) −8.85714e11 −0.504496
\(527\) 1.44947e12 0.818582
\(528\) −3.29024e11 −0.184236
\(529\) −6.17280e11 −0.342714
\(530\) 1.87626e12 1.03288
\(531\) 1.38133e12 0.754003
\(532\) 1.98649e10 0.0107519
\(533\) 0 0
\(534\) 1.18324e12 0.629705
\(535\) 6.31908e11 0.333474
\(536\) 5.28610e11 0.276627
\(537\) −9.32560e11 −0.483941
\(538\) −1.57957e12 −0.812865
\(539\) 2.32964e12 1.18888
\(540\) 1.25591e12 0.635604
\(541\) −3.95324e12 −1.98411 −0.992056 0.125800i \(-0.959850\pi\)
−0.992056 + 0.125800i \(0.959850\pi\)
\(542\) −2.52520e12 −1.25690
\(543\) 1.30815e12 0.645740
\(544\) −2.46254e11 −0.120556
\(545\) 3.02290e12 1.46771
\(546\) 0 0
\(547\) −2.49418e12 −1.19120 −0.595601 0.803281i \(-0.703086\pi\)
−0.595601 + 0.803281i \(0.703086\pi\)
\(548\) 3.08793e10 0.0146270
\(549\) −3.01209e11 −0.141512
\(550\) 1.16251e12 0.541708
\(551\) 3.27639e11 0.151430
\(552\) −3.82143e11 −0.175186
\(553\) −4.54965e11 −0.206878
\(554\) −4.04010e11 −0.182221
\(555\) −2.39338e12 −1.07076
\(556\) 1.28193e12 0.568889
\(557\) −2.22532e12 −0.979588 −0.489794 0.871838i \(-0.662928\pi\)
−0.489794 + 0.871838i \(0.662928\pi\)
\(558\) 1.21768e12 0.531714
\(559\) 0 0
\(560\) −8.80768e10 −0.0378456
\(561\) −1.17905e12 −0.502572
\(562\) −1.19080e12 −0.503529
\(563\) −3.00484e12 −1.26047 −0.630237 0.776403i \(-0.717042\pi\)
−0.630237 + 0.776403i \(0.717042\pi\)
\(564\) 6.65373e11 0.276891
\(565\) −3.60061e12 −1.48648
\(566\) 1.73438e12 0.710347
\(567\) 5.51051e9 0.00223907
\(568\) −4.60989e11 −0.185833
\(569\) 3.35545e12 1.34198 0.670989 0.741467i \(-0.265870\pi\)
0.670989 + 0.741467i \(0.265870\pi\)
\(570\) 2.53011e11 0.100393
\(571\) 2.15636e12 0.848903 0.424451 0.905451i \(-0.360467\pi\)
0.424451 + 0.905451i \(0.360467\pi\)
\(572\) 0 0
\(573\) 1.03556e11 0.0401310
\(574\) −2.42387e11 −0.0931979
\(575\) 1.35019e12 0.515098
\(576\) −2.06874e11 −0.0783076
\(577\) 2.02642e12 0.761095 0.380547 0.924761i \(-0.375736\pi\)
0.380547 + 0.924761i \(0.375736\pi\)
\(578\) 1.01497e12 0.378247
\(579\) −1.25569e12 −0.464331
\(580\) −1.45268e12 −0.533020
\(581\) −1.51717e11 −0.0552386
\(582\) −2.95077e11 −0.106606
\(583\) −3.84182e12 −1.37730
\(584\) −7.28098e11 −0.259019
\(585\) 0 0
\(586\) 7.75403e11 0.271636
\(587\) 1.74926e12 0.608112 0.304056 0.952654i \(-0.401659\pi\)
0.304056 + 0.952654i \(0.401659\pi\)
\(588\) −8.73387e11 −0.301307
\(589\) 6.36887e11 0.218044
\(590\) −3.20334e12 −1.08835
\(591\) −3.26243e12 −1.10001
\(592\) 1.02354e12 0.342499
\(593\) −2.36850e12 −0.786551 −0.393275 0.919421i \(-0.628658\pi\)
−0.393275 + 0.919421i \(0.628658\pi\)
\(594\) −2.57160e12 −0.847547
\(595\) −3.15620e11 −0.103238
\(596\) 2.25122e12 0.730818
\(597\) −2.30730e12 −0.743396
\(598\) 0 0
\(599\) 3.95956e12 1.25668 0.628342 0.777937i \(-0.283734\pi\)
0.628342 + 0.777937i \(0.283734\pi\)
\(600\) −4.35829e11 −0.137289
\(601\) −1.46479e12 −0.457974 −0.228987 0.973429i \(-0.573541\pi\)
−0.228987 + 0.973429i \(0.573541\pi\)
\(602\) 3.23685e11 0.100447
\(603\) 1.59133e12 0.490155
\(604\) 4.84665e11 0.148175
\(605\) −1.91278e12 −0.580452
\(606\) −1.20862e12 −0.364052
\(607\) 2.37878e12 0.711221 0.355610 0.934634i \(-0.384273\pi\)
0.355610 + 0.934634i \(0.384273\pi\)
\(608\) −1.08202e11 −0.0321122
\(609\) 2.04731e11 0.0603124
\(610\) 6.98511e11 0.204263
\(611\) 0 0
\(612\) −7.41324e11 −0.213613
\(613\) 3.04291e12 0.870397 0.435198 0.900335i \(-0.356678\pi\)
0.435198 + 0.900335i \(0.356678\pi\)
\(614\) −1.39379e12 −0.395766
\(615\) −3.08718e12 −0.870211
\(616\) 1.80346e11 0.0504653
\(617\) 6.91186e12 1.92005 0.960024 0.279918i \(-0.0903074\pi\)
0.960024 + 0.279918i \(0.0903074\pi\)
\(618\) 2.29714e12 0.633488
\(619\) 9.28522e10 0.0254205 0.0127103 0.999919i \(-0.495954\pi\)
0.0127103 + 0.999919i \(0.495954\pi\)
\(620\) −2.82382e12 −0.767493
\(621\) −2.98677e12 −0.805914
\(622\) 2.89778e11 0.0776262
\(623\) −6.48561e11 −0.172486
\(624\) 0 0
\(625\) −4.69849e12 −1.23168
\(626\) 4.00711e12 1.04291
\(627\) −5.18064e11 −0.133869
\(628\) 3.65996e12 0.938984
\(629\) 3.66784e12 0.934290
\(630\) −2.65147e11 −0.0670586
\(631\) −3.44921e12 −0.866139 −0.433070 0.901360i \(-0.642570\pi\)
−0.433070 + 0.901360i \(0.642570\pi\)
\(632\) 2.47814e12 0.617873
\(633\) −2.46842e12 −0.611086
\(634\) −2.59946e12 −0.638973
\(635\) 6.15573e11 0.150244
\(636\) 1.44031e12 0.349059
\(637\) 0 0
\(638\) 2.97450e12 0.710756
\(639\) −1.38777e12 −0.329278
\(640\) 4.79745e11 0.113032
\(641\) 1.38534e12 0.324111 0.162056 0.986782i \(-0.448188\pi\)
0.162056 + 0.986782i \(0.448188\pi\)
\(642\) 4.85084e11 0.112696
\(643\) 1.95260e12 0.450468 0.225234 0.974305i \(-0.427685\pi\)
0.225234 + 0.974305i \(0.427685\pi\)
\(644\) 2.09461e11 0.0479863
\(645\) 4.12264e12 0.937900
\(646\) −3.87738e11 −0.0875976
\(647\) 7.01375e11 0.157355 0.0786775 0.996900i \(-0.474930\pi\)
0.0786775 + 0.996900i \(0.474930\pi\)
\(648\) −3.00151e10 −0.00668733
\(649\) 6.55915e12 1.45126
\(650\) 0 0
\(651\) 3.97971e11 0.0868435
\(652\) −3.46399e12 −0.750694
\(653\) 2.16551e12 0.466070 0.233035 0.972468i \(-0.425134\pi\)
0.233035 + 0.972468i \(0.425134\pi\)
\(654\) 2.32053e12 0.496006
\(655\) 2.02224e12 0.429285
\(656\) 1.32026e12 0.278350
\(657\) −2.19187e12 −0.458956
\(658\) −3.64706e11 −0.0758449
\(659\) 6.99434e12 1.44465 0.722325 0.691554i \(-0.243074\pi\)
0.722325 + 0.691554i \(0.243074\pi\)
\(660\) 2.29699e12 0.471206
\(661\) 7.13364e12 1.45347 0.726733 0.686920i \(-0.241038\pi\)
0.726733 + 0.686920i \(0.241038\pi\)
\(662\) −1.04677e12 −0.211831
\(663\) 0 0
\(664\) 8.26388e11 0.164979
\(665\) −1.38681e11 −0.0274992
\(666\) 3.08129e12 0.606874
\(667\) 3.45471e12 0.675843
\(668\) 2.22114e12 0.431600
\(669\) −4.78857e12 −0.924248
\(670\) −3.69034e12 −0.707505
\(671\) −1.43027e12 −0.272374
\(672\) −6.76122e10 −0.0127898
\(673\) −5.90336e12 −1.10925 −0.554627 0.832099i \(-0.687139\pi\)
−0.554627 + 0.832099i \(0.687139\pi\)
\(674\) 1.34043e12 0.250192
\(675\) −3.40637e12 −0.631574
\(676\) 0 0
\(677\) 4.09197e12 0.748657 0.374329 0.927296i \(-0.377873\pi\)
0.374329 + 0.927296i \(0.377873\pi\)
\(678\) −2.76401e12 −0.502349
\(679\) 1.61738e11 0.0292011
\(680\) 1.71915e12 0.308335
\(681\) 1.82000e12 0.324271
\(682\) 5.78204e12 1.02341
\(683\) 1.90878e12 0.335631 0.167816 0.985818i \(-0.446329\pi\)
0.167816 + 0.985818i \(0.446329\pi\)
\(684\) −3.25732e11 −0.0568995
\(685\) −2.15575e11 −0.0374102
\(686\) 9.64251e11 0.166238
\(687\) −4.43024e12 −0.758791
\(688\) −1.76308e12 −0.300002
\(689\) 0 0
\(690\) 2.66782e12 0.448059
\(691\) 1.26665e12 0.211352 0.105676 0.994401i \(-0.466299\pi\)
0.105676 + 0.994401i \(0.466299\pi\)
\(692\) 5.19679e12 0.861504
\(693\) 5.42914e11 0.0894194
\(694\) −8.29240e12 −1.35695
\(695\) −8.94941e12 −1.45500
\(696\) −1.11515e12 −0.180132
\(697\) 4.73109e12 0.759301
\(698\) 4.44771e12 0.709230
\(699\) −5.99731e12 −0.950188
\(700\) 2.38888e11 0.0376057
\(701\) −5.95358e12 −0.931208 −0.465604 0.884993i \(-0.654163\pi\)
−0.465604 + 0.884993i \(0.654163\pi\)
\(702\) 0 0
\(703\) 1.61162e12 0.248865
\(704\) −9.82323e11 −0.150722
\(705\) −4.64510e12 −0.708181
\(706\) −2.57505e12 −0.390089
\(707\) 6.62473e11 0.0997196
\(708\) −2.45905e12 −0.367804
\(709\) −8.83324e11 −0.131284 −0.0656420 0.997843i \(-0.520910\pi\)
−0.0656420 + 0.997843i \(0.520910\pi\)
\(710\) 3.21826e12 0.475290
\(711\) 7.46022e12 1.09481
\(712\) 3.53264e12 0.515156
\(713\) 6.71552e12 0.973143
\(714\) −2.42286e11 −0.0348888
\(715\) 0 0
\(716\) −2.78422e12 −0.395908
\(717\) −8.15099e12 −1.15179
\(718\) −2.32367e12 −0.326298
\(719\) 2.53369e12 0.353568 0.176784 0.984250i \(-0.443431\pi\)
0.176784 + 0.984250i \(0.443431\pi\)
\(720\) 1.44423e12 0.200281
\(721\) −1.25911e12 −0.173522
\(722\) 4.99263e12 0.683774
\(723\) −5.11146e12 −0.695701
\(724\) 3.90556e12 0.528275
\(725\) 3.94006e12 0.529641
\(726\) −1.46835e12 −0.196162
\(727\) −8.73905e12 −1.16027 −0.580135 0.814520i \(-0.697000\pi\)
−0.580135 + 0.814520i \(0.697000\pi\)
\(728\) 0 0
\(729\) 4.54255e12 0.595697
\(730\) 5.08300e12 0.662472
\(731\) −6.31792e12 −0.818363
\(732\) 5.36212e11 0.0690298
\(733\) 2.45358e12 0.313930 0.156965 0.987604i \(-0.449829\pi\)
0.156965 + 0.987604i \(0.449829\pi\)
\(734\) 9.41463e12 1.19721
\(735\) 6.09730e12 0.770627
\(736\) −1.14091e12 −0.143319
\(737\) 7.55632e12 0.943423
\(738\) 3.97451e12 0.493208
\(739\) −1.44149e13 −1.77792 −0.888960 0.457985i \(-0.848571\pi\)
−0.888960 + 0.457985i \(0.848571\pi\)
\(740\) −7.14558e12 −0.875981
\(741\) 0 0
\(742\) −7.89466e11 −0.0956128
\(743\) −2.25852e12 −0.271878 −0.135939 0.990717i \(-0.543405\pi\)
−0.135939 + 0.990717i \(0.543405\pi\)
\(744\) −2.16771e12 −0.259371
\(745\) −1.57162e13 −1.86915
\(746\) −4.68390e12 −0.553711
\(747\) 2.48777e12 0.292325
\(748\) −3.52012e12 −0.411150
\(749\) −2.65885e11 −0.0308693
\(750\) −1.74627e12 −0.201528
\(751\) 5.94360e12 0.681821 0.340910 0.940096i \(-0.389265\pi\)
0.340910 + 0.940096i \(0.389265\pi\)
\(752\) 1.98651e12 0.226522
\(753\) −5.69003e12 −0.644967
\(754\) 0 0
\(755\) −3.38354e12 −0.378975
\(756\) −5.28445e11 −0.0588372
\(757\) −5.15480e12 −0.570533 −0.285266 0.958448i \(-0.592082\pi\)
−0.285266 + 0.958448i \(0.592082\pi\)
\(758\) 1.86321e12 0.204999
\(759\) −5.46261e12 −0.597465
\(760\) 7.55381e11 0.0821306
\(761\) −6.04018e11 −0.0652858 −0.0326429 0.999467i \(-0.510392\pi\)
−0.0326429 + 0.999467i \(0.510392\pi\)
\(762\) 4.72545e11 0.0507745
\(763\) −1.27193e12 −0.135864
\(764\) 3.09173e11 0.0328308
\(765\) 5.17534e12 0.546339
\(766\) −5.08914e12 −0.534090
\(767\) 0 0
\(768\) 3.68276e11 0.0381986
\(769\) −1.50501e12 −0.155193 −0.0775963 0.996985i \(-0.524725\pi\)
−0.0775963 + 0.996985i \(0.524725\pi\)
\(770\) −1.25903e12 −0.129071
\(771\) −3.08698e12 −0.314622
\(772\) −3.74893e12 −0.379865
\(773\) −7.53437e12 −0.758996 −0.379498 0.925193i \(-0.623903\pi\)
−0.379498 + 0.925193i \(0.623903\pi\)
\(774\) −5.30758e12 −0.531573
\(775\) 7.65896e12 0.762627
\(776\) −8.80971e11 −0.0872135
\(777\) 1.00705e12 0.0991191
\(778\) 3.00872e12 0.294424
\(779\) 2.07881e12 0.202253
\(780\) 0 0
\(781\) −6.58970e12 −0.633776
\(782\) −4.08842e12 −0.390953
\(783\) −8.71581e12 −0.828667
\(784\) −2.60755e12 −0.246497
\(785\) −2.55509e13 −2.40156
\(786\) 1.55237e12 0.145075
\(787\) 4.10896e12 0.381809 0.190904 0.981609i \(-0.438858\pi\)
0.190904 + 0.981609i \(0.438858\pi\)
\(788\) −9.74019e12 −0.899911
\(789\) 4.74665e12 0.436054
\(790\) −1.73004e13 −1.58028
\(791\) 1.51502e12 0.137601
\(792\) −2.95719e12 −0.267065
\(793\) 0 0
\(794\) −1.30665e13 −1.16672
\(795\) −1.00551e13 −0.892759
\(796\) −6.88860e12 −0.608166
\(797\) −3.53460e12 −0.310297 −0.155149 0.987891i \(-0.549586\pi\)
−0.155149 + 0.987891i \(0.549586\pi\)
\(798\) −1.06459e11 −0.00929325
\(799\) 7.11860e12 0.617922
\(800\) −1.30120e12 −0.112315
\(801\) 1.06347e13 0.912806
\(802\) 1.54333e13 1.31727
\(803\) −1.04079e13 −0.883373
\(804\) −2.83289e12 −0.239099
\(805\) −1.46229e12 −0.122731
\(806\) 0 0
\(807\) 8.46510e12 0.702589
\(808\) −3.60842e12 −0.297828
\(809\) 8.96434e12 0.735783 0.367892 0.929869i \(-0.380080\pi\)
0.367892 + 0.929869i \(0.380080\pi\)
\(810\) 2.09542e11 0.0171036
\(811\) 8.61534e12 0.699324 0.349662 0.936876i \(-0.386296\pi\)
0.349662 + 0.936876i \(0.386296\pi\)
\(812\) 6.11238e11 0.0493411
\(813\) 1.35329e13 1.08638
\(814\) 1.46313e13 1.16808
\(815\) 2.41829e13 1.91999
\(816\) 1.31970e12 0.104201
\(817\) −2.77605e12 −0.217986
\(818\) 7.88451e12 0.615722
\(819\) 0 0
\(820\) −9.21698e12 −0.711912
\(821\) −2.09873e13 −1.61218 −0.806088 0.591796i \(-0.798419\pi\)
−0.806088 + 0.591796i \(0.798419\pi\)
\(822\) −1.65486e11 −0.0126426
\(823\) 1.47480e13 1.12056 0.560280 0.828304i \(-0.310694\pi\)
0.560280 + 0.828304i \(0.310694\pi\)
\(824\) 6.85824e12 0.518251
\(825\) −6.23004e12 −0.468218
\(826\) 1.34786e12 0.100747
\(827\) −1.00085e13 −0.744037 −0.372018 0.928225i \(-0.621334\pi\)
−0.372018 + 0.928225i \(0.621334\pi\)
\(828\) −3.43461e12 −0.253946
\(829\) 8.15300e12 0.599546 0.299773 0.954011i \(-0.403089\pi\)
0.299773 + 0.954011i \(0.403089\pi\)
\(830\) −5.76918e12 −0.421952
\(831\) 2.16514e12 0.157500
\(832\) 0 0
\(833\) −9.34407e12 −0.672409
\(834\) −6.87001e12 −0.491712
\(835\) −1.55062e13 −1.10387
\(836\) −1.54671e12 −0.109517
\(837\) −1.69424e13 −1.19319
\(838\) −1.70867e12 −0.119690
\(839\) −1.94338e13 −1.35403 −0.677017 0.735968i \(-0.736728\pi\)
−0.677017 + 0.735968i \(0.736728\pi\)
\(840\) 4.72014e11 0.0327113
\(841\) −4.42580e12 −0.305077
\(842\) −1.45104e12 −0.0994892
\(843\) 6.38163e12 0.435219
\(844\) −7.36963e12 −0.499925
\(845\) 0 0
\(846\) 5.98022e12 0.401375
\(847\) 8.04834e11 0.0537318
\(848\) 4.30014e12 0.285562
\(849\) −9.29475e12 −0.613979
\(850\) −4.66279e12 −0.306380
\(851\) 1.69934e13 1.11070
\(852\) 2.47050e12 0.160623
\(853\) 8.40777e12 0.543764 0.271882 0.962331i \(-0.412354\pi\)
0.271882 + 0.962331i \(0.412354\pi\)
\(854\) −2.93910e11 −0.0189083
\(855\) 2.27400e12 0.145527
\(856\) 1.44825e12 0.0921958
\(857\) 1.57510e13 0.997458 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(858\) 0 0
\(859\) 3.45790e12 0.216692 0.108346 0.994113i \(-0.465445\pi\)
0.108346 + 0.994113i \(0.465445\pi\)
\(860\) 1.23084e13 0.767289
\(861\) 1.29898e12 0.0805544
\(862\) 8.62645e12 0.532169
\(863\) −5.82263e12 −0.357331 −0.178665 0.983910i \(-0.557178\pi\)
−0.178665 + 0.983910i \(0.557178\pi\)
\(864\) 2.87838e12 0.175726
\(865\) −3.62798e13 −2.20340
\(866\) −7.49619e12 −0.452908
\(867\) −5.43932e12 −0.326933
\(868\) 1.18817e12 0.0710460
\(869\) 3.54243e13 2.10723
\(870\) 7.78508e12 0.460709
\(871\) 0 0
\(872\) 6.92809e12 0.405779
\(873\) −2.65208e12 −0.154534
\(874\) −1.79642e12 −0.104137
\(875\) 9.57168e11 0.0552016
\(876\) 3.90196e12 0.223880
\(877\) 5.98999e12 0.341923 0.170961 0.985278i \(-0.445313\pi\)
0.170961 + 0.985278i \(0.445313\pi\)
\(878\) −5.76022e12 −0.327125
\(879\) −4.15548e12 −0.234785
\(880\) 6.85780e12 0.385490
\(881\) −2.57327e13 −1.43911 −0.719554 0.694437i \(-0.755654\pi\)
−0.719554 + 0.694437i \(0.755654\pi\)
\(882\) −7.84980e12 −0.436767
\(883\) −3.22167e13 −1.78344 −0.891719 0.452590i \(-0.850500\pi\)
−0.891719 + 0.452590i \(0.850500\pi\)
\(884\) 0 0
\(885\) 1.71671e13 0.940702
\(886\) −2.16204e13 −1.17872
\(887\) −1.54777e13 −0.839557 −0.419779 0.907627i \(-0.637892\pi\)
−0.419779 + 0.907627i \(0.637892\pi\)
\(888\) −5.48530e12 −0.296034
\(889\) −2.59012e11 −0.0139079
\(890\) −2.46621e13 −1.31757
\(891\) −4.29057e11 −0.0228068
\(892\) −1.42966e13 −0.756120
\(893\) 3.12786e12 0.164595
\(894\) −1.20645e13 −0.631672
\(895\) 1.94372e13 1.01258
\(896\) −2.01860e11 −0.0104632
\(897\) 0 0
\(898\) 1.77077e13 0.908699
\(899\) 1.95968e13 1.00062
\(900\) −3.91713e12 −0.199011
\(901\) 1.54094e13 0.778975
\(902\) 1.88727e13 0.949300
\(903\) −1.73467e12 −0.0868203
\(904\) −8.25212e12 −0.410968
\(905\) −2.72655e13 −1.35112
\(906\) −2.59738e12 −0.128073
\(907\) −4.09617e12 −0.200977 −0.100488 0.994938i \(-0.532040\pi\)
−0.100488 + 0.994938i \(0.532040\pi\)
\(908\) 5.43372e12 0.265284
\(909\) −1.08628e13 −0.527721
\(910\) 0 0
\(911\) −3.19819e13 −1.53841 −0.769204 0.639003i \(-0.779347\pi\)
−0.769204 + 0.639003i \(0.779347\pi\)
\(912\) 5.79868e11 0.0277557
\(913\) 1.18130e13 0.562652
\(914\) −2.40060e13 −1.13779
\(915\) −3.74340e12 −0.176552
\(916\) −1.32268e13 −0.620761
\(917\) −8.50889e11 −0.0397384
\(918\) 1.03146e13 0.479357
\(919\) −3.05636e13 −1.41347 −0.706733 0.707481i \(-0.749832\pi\)
−0.706733 + 0.707481i \(0.749832\pi\)
\(920\) 7.96495e12 0.366554
\(921\) 7.46947e12 0.342075
\(922\) 2.00893e13 0.915536
\(923\) 0 0
\(924\) −9.66494e11 −0.0436190
\(925\) 1.93807e13 0.870427
\(926\) −7.35060e12 −0.328529
\(927\) 2.06461e13 0.918289
\(928\) −3.32935e12 −0.147365
\(929\) 1.96670e13 0.866300 0.433150 0.901322i \(-0.357402\pi\)
0.433150 + 0.901322i \(0.357402\pi\)
\(930\) 1.51332e13 0.663373
\(931\) −4.10572e12 −0.179108
\(932\) −1.79054e13 −0.777341
\(933\) −1.55295e12 −0.0670952
\(934\) 3.15952e13 1.35850
\(935\) 2.45747e13 1.05156
\(936\) 0 0
\(937\) 5.88474e12 0.249401 0.124701 0.992194i \(-0.460203\pi\)
0.124701 + 0.992194i \(0.460203\pi\)
\(938\) 1.55277e12 0.0654929
\(939\) −2.14746e13 −0.901425
\(940\) −1.38683e13 −0.579357
\(941\) 1.79868e13 0.747827 0.373914 0.927464i \(-0.378016\pi\)
0.373914 + 0.927464i \(0.378016\pi\)
\(942\) −1.96142e13 −0.811598
\(943\) 2.19195e13 0.902669
\(944\) −7.34164e12 −0.300898
\(945\) 3.68918e12 0.150483
\(946\) −2.52026e13 −1.02314
\(947\) 1.42787e13 0.576917 0.288459 0.957492i \(-0.406857\pi\)
0.288459 + 0.957492i \(0.406857\pi\)
\(948\) −1.32807e13 −0.534050
\(949\) 0 0
\(950\) −2.04880e12 −0.0816098
\(951\) 1.39308e13 0.552287
\(952\) −7.23359e11 −0.0285422
\(953\) −4.85651e11 −0.0190724 −0.00953622 0.999955i \(-0.503036\pi\)
−0.00953622 + 0.999955i \(0.503036\pi\)
\(954\) 1.29452e13 0.505988
\(955\) −2.15840e12 −0.0839686
\(956\) −2.43353e13 −0.942271
\(957\) −1.59407e13 −0.614333
\(958\) 3.16561e13 1.21426
\(959\) 9.07066e10 0.00346302
\(960\) −2.57101e12 −0.0976975
\(961\) 1.16541e13 0.440783
\(962\) 0 0
\(963\) 4.35982e12 0.163362
\(964\) −1.52606e13 −0.569147
\(965\) 2.61720e13 0.971549
\(966\) −1.12253e12 −0.0414763
\(967\) −3.93014e13 −1.44540 −0.722702 0.691160i \(-0.757100\pi\)
−0.722702 + 0.691160i \(0.757100\pi\)
\(968\) −4.38384e12 −0.160478
\(969\) 2.07794e12 0.0757138
\(970\) 6.15024e12 0.223059
\(971\) 7.17694e12 0.259091 0.129546 0.991573i \(-0.458648\pi\)
0.129546 + 0.991573i \(0.458648\pi\)
\(972\) 1.39927e13 0.502809
\(973\) 3.76561e12 0.134688
\(974\) 1.39269e13 0.495837
\(975\) 0 0
\(976\) 1.60089e12 0.0564727
\(977\) −2.36882e13 −0.831775 −0.415888 0.909416i \(-0.636529\pi\)
−0.415888 + 0.909416i \(0.636529\pi\)
\(978\) 1.85640e13 0.648853
\(979\) 5.04979e13 1.75692
\(980\) 1.82039e13 0.630444
\(981\) 2.08564e13 0.718999
\(982\) 1.46501e13 0.502734
\(983\) −2.27685e12 −0.0777755 −0.0388877 0.999244i \(-0.512381\pi\)
−0.0388877 + 0.999244i \(0.512381\pi\)
\(984\) −7.07542e12 −0.240588
\(985\) 6.79982e13 2.30163
\(986\) −1.19306e13 −0.401991
\(987\) 1.95450e12 0.0655555
\(988\) 0 0
\(989\) −2.92714e13 −0.972883
\(990\) 2.06448e13 0.683049
\(991\) 5.41684e13 1.78408 0.892041 0.451955i \(-0.149273\pi\)
0.892041 + 0.451955i \(0.149273\pi\)
\(992\) −6.47183e12 −0.212190
\(993\) 5.60976e12 0.183094
\(994\) −1.35414e12 −0.0439971
\(995\) 4.80908e13 1.55546
\(996\) −4.42871e12 −0.142597
\(997\) 2.39920e12 0.0769020 0.0384510 0.999260i \(-0.487758\pi\)
0.0384510 + 0.999260i \(0.487758\pi\)
\(998\) −1.66402e13 −0.530971
\(999\) −4.28722e13 −1.36185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.e.1.2 3
13.12 even 2 26.10.a.e.1.2 3
39.38 odd 2 234.10.a.k.1.1 3
52.51 odd 2 208.10.a.d.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.e.1.2 3 13.12 even 2
208.10.a.d.1.2 3 52.51 odd 2
234.10.a.k.1.1 3 39.38 odd 2
338.10.a.e.1.2 3 1.1 even 1 trivial