Properties

Label 208.10.a.d.1.2
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2119705.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 376x + 1820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-21.0141\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-85.7459 q^{3} +1787.19 q^{5} +751.989 q^{7} -12330.6 q^{9} -58551.0 q^{11} -28561.0 q^{13} -153244. q^{15} +234846. q^{17} +103190. q^{19} -64480.0 q^{21} -1.08806e6 q^{23} +1.24092e6 q^{25} +2.74504e6 q^{27} +3.17511e6 q^{29} +6.17201e6 q^{31} +5.02051e6 q^{33} +1.34395e6 q^{35} -1.56181e7 q^{37} +2.44899e6 q^{39} -2.01455e7 q^{41} +2.69024e7 q^{43} -2.20372e7 q^{45} +3.03118e7 q^{47} -3.97881e7 q^{49} -2.01371e7 q^{51} +6.56149e7 q^{53} -1.04642e8 q^{55} -8.84808e6 q^{57} -1.12025e8 q^{59} +2.44277e7 q^{61} -9.27250e6 q^{63} -5.10439e7 q^{65} -1.29055e8 q^{67} +9.32967e7 q^{69} +1.12546e8 q^{71} -1.77758e8 q^{73} -1.06404e8 q^{75} -4.40297e7 q^{77} +6.05015e8 q^{79} +7.32791e6 q^{81} -2.01755e8 q^{83} +4.19714e8 q^{85} -2.72253e8 q^{87} +8.62460e8 q^{89} -2.14776e7 q^{91} -5.29225e8 q^{93} +1.84419e8 q^{95} -2.15081e8 q^{97} +7.21971e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 156 q^{3} - 1272 q^{5} - 17058 q^{7} + 42273 q^{9} - 73974 q^{11} - 85683 q^{13} - 393756 q^{15} + 374976 q^{17} - 418338 q^{19} - 284694 q^{21} - 1026168 q^{23} + 3337287 q^{25} - 4218588 q^{27}+ \cdots + 2480087466 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −85.7459 −0.611178 −0.305589 0.952163i \(-0.598853\pi\)
−0.305589 + 0.952163i \(0.598853\pi\)
\(4\) 0 0
\(5\) 1787.19 1.27881 0.639404 0.768871i \(-0.279181\pi\)
0.639404 + 0.768871i \(0.279181\pi\)
\(6\) 0 0
\(7\) 751.989 0.118378 0.0591889 0.998247i \(-0.481149\pi\)
0.0591889 + 0.998247i \(0.481149\pi\)
\(8\) 0 0
\(9\) −12330.6 −0.626461
\(10\) 0 0
\(11\) −58551.0 −1.20578 −0.602889 0.797825i \(-0.705984\pi\)
−0.602889 + 0.797825i \(0.705984\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) −153244. −0.781580
\(16\) 0 0
\(17\) 234846. 0.681966 0.340983 0.940069i \(-0.389240\pi\)
0.340983 + 0.940069i \(0.389240\pi\)
\(18\) 0 0
\(19\) 103190. 0.181654 0.0908269 0.995867i \(-0.471049\pi\)
0.0908269 + 0.995867i \(0.471049\pi\)
\(20\) 0 0
\(21\) −64480.0 −0.0723499
\(22\) 0 0
\(23\) −1.08806e6 −0.810732 −0.405366 0.914154i \(-0.632856\pi\)
−0.405366 + 0.914154i \(0.632856\pi\)
\(24\) 0 0
\(25\) 1.24092e6 0.635350
\(26\) 0 0
\(27\) 2.74504e6 0.994058
\(28\) 0 0
\(29\) 3.17511e6 0.833620 0.416810 0.908994i \(-0.363148\pi\)
0.416810 + 0.908994i \(0.363148\pi\)
\(30\) 0 0
\(31\) 6.17201e6 1.20033 0.600163 0.799878i \(-0.295102\pi\)
0.600163 + 0.799878i \(0.295102\pi\)
\(32\) 0 0
\(33\) 5.02051e6 0.736945
\(34\) 0 0
\(35\) 1.34395e6 0.151382
\(36\) 0 0
\(37\) −1.56181e7 −1.37000 −0.684998 0.728545i \(-0.740197\pi\)
−0.684998 + 0.728545i \(0.740197\pi\)
\(38\) 0 0
\(39\) 2.44899e6 0.169510
\(40\) 0 0
\(41\) −2.01455e7 −1.11340 −0.556700 0.830714i \(-0.687933\pi\)
−0.556700 + 0.830714i \(0.687933\pi\)
\(42\) 0 0
\(43\) 2.69024e7 1.20001 0.600003 0.799998i \(-0.295166\pi\)
0.600003 + 0.799998i \(0.295166\pi\)
\(44\) 0 0
\(45\) −2.20372e7 −0.801123
\(46\) 0 0
\(47\) 3.03118e7 0.906090 0.453045 0.891488i \(-0.350338\pi\)
0.453045 + 0.891488i \(0.350338\pi\)
\(48\) 0 0
\(49\) −3.97881e7 −0.985987
\(50\) 0 0
\(51\) −2.01371e7 −0.416803
\(52\) 0 0
\(53\) 6.56149e7 1.14225 0.571125 0.820863i \(-0.306507\pi\)
0.571125 + 0.820863i \(0.306507\pi\)
\(54\) 0 0
\(55\) −1.04642e8 −1.54196
\(56\) 0 0
\(57\) −8.84808e6 −0.111023
\(58\) 0 0
\(59\) −1.12025e8 −1.20359 −0.601796 0.798650i \(-0.705548\pi\)
−0.601796 + 0.798650i \(0.705548\pi\)
\(60\) 0 0
\(61\) 2.44277e7 0.225891 0.112945 0.993601i \(-0.463971\pi\)
0.112945 + 0.993601i \(0.463971\pi\)
\(62\) 0 0
\(63\) −9.27250e6 −0.0741591
\(64\) 0 0
\(65\) −5.10439e7 −0.354678
\(66\) 0 0
\(67\) −1.29055e8 −0.782419 −0.391209 0.920302i \(-0.627943\pi\)
−0.391209 + 0.920302i \(0.627943\pi\)
\(68\) 0 0
\(69\) 9.32967e7 0.495502
\(70\) 0 0
\(71\) 1.12546e8 0.525616 0.262808 0.964848i \(-0.415351\pi\)
0.262808 + 0.964848i \(0.415351\pi\)
\(72\) 0 0
\(73\) −1.77758e8 −0.732617 −0.366308 0.930493i \(-0.619378\pi\)
−0.366308 + 0.930493i \(0.619378\pi\)
\(74\) 0 0
\(75\) −1.06404e8 −0.388312
\(76\) 0 0
\(77\) −4.40297e7 −0.142737
\(78\) 0 0
\(79\) 6.05015e8 1.74761 0.873805 0.486277i \(-0.161645\pi\)
0.873805 + 0.486277i \(0.161645\pi\)
\(80\) 0 0
\(81\) 7.32791e6 0.0189146
\(82\) 0 0
\(83\) −2.01755e8 −0.466630 −0.233315 0.972401i \(-0.574957\pi\)
−0.233315 + 0.972401i \(0.574957\pi\)
\(84\) 0 0
\(85\) 4.19714e8 0.872103
\(86\) 0 0
\(87\) −2.72253e8 −0.509491
\(88\) 0 0
\(89\) 8.62460e8 1.45708 0.728541 0.685002i \(-0.240199\pi\)
0.728541 + 0.685002i \(0.240199\pi\)
\(90\) 0 0
\(91\) −2.14776e7 −0.0328321
\(92\) 0 0
\(93\) −5.29225e8 −0.733613
\(94\) 0 0
\(95\) 1.84419e8 0.232300
\(96\) 0 0
\(97\) −2.15081e8 −0.246677 −0.123339 0.992365i \(-0.539360\pi\)
−0.123339 + 0.992365i \(0.539360\pi\)
\(98\) 0 0
\(99\) 7.21971e8 0.755373
\(100\) 0 0
\(101\) 8.80961e8 0.842385 0.421192 0.906971i \(-0.361612\pi\)
0.421192 + 0.906971i \(0.361612\pi\)
\(102\) 0 0
\(103\) 1.67438e9 1.46584 0.732918 0.680317i \(-0.238158\pi\)
0.732918 + 0.680317i \(0.238158\pi\)
\(104\) 0 0
\(105\) −1.15238e8 −0.0925217
\(106\) 0 0
\(107\) 3.53576e8 0.260769 0.130385 0.991463i \(-0.458379\pi\)
0.130385 + 0.991463i \(0.458379\pi\)
\(108\) 0 0
\(109\) 1.69143e9 1.14772 0.573858 0.818955i \(-0.305446\pi\)
0.573858 + 0.818955i \(0.305446\pi\)
\(110\) 0 0
\(111\) 1.33918e9 0.837312
\(112\) 0 0
\(113\) 2.01468e9 1.16239 0.581196 0.813763i \(-0.302585\pi\)
0.581196 + 0.813763i \(0.302585\pi\)
\(114\) 0 0
\(115\) −1.94457e9 −1.03677
\(116\) 0 0
\(117\) 3.52175e8 0.173749
\(118\) 0 0
\(119\) 1.76601e8 0.0807296
\(120\) 0 0
\(121\) 1.07027e9 0.453901
\(122\) 0 0
\(123\) 1.72740e9 0.680486
\(124\) 0 0
\(125\) −1.27285e9 −0.466317
\(126\) 0 0
\(127\) 3.44437e8 0.117488 0.0587439 0.998273i \(-0.481290\pi\)
0.0587439 + 0.998273i \(0.481290\pi\)
\(128\) 0 0
\(129\) −2.30677e9 −0.733418
\(130\) 0 0
\(131\) 1.13152e9 0.335692 0.167846 0.985813i \(-0.446319\pi\)
0.167846 + 0.985813i \(0.446319\pi\)
\(132\) 0 0
\(133\) 7.75974e7 0.0215038
\(134\) 0 0
\(135\) 4.90590e9 1.27121
\(136\) 0 0
\(137\) −1.20622e8 −0.0292540 −0.0146270 0.999893i \(-0.504656\pi\)
−0.0146270 + 0.999893i \(0.504656\pi\)
\(138\) 0 0
\(139\) −5.00754e9 −1.13778 −0.568889 0.822414i \(-0.692627\pi\)
−0.568889 + 0.822414i \(0.692627\pi\)
\(140\) 0 0
\(141\) −2.59911e9 −0.553782
\(142\) 0 0
\(143\) 1.67228e9 0.334423
\(144\) 0 0
\(145\) 5.67453e9 1.06604
\(146\) 0 0
\(147\) 3.41167e9 0.602614
\(148\) 0 0
\(149\) −8.79381e9 −1.46164 −0.730818 0.682573i \(-0.760861\pi\)
−0.730818 + 0.682573i \(0.760861\pi\)
\(150\) 0 0
\(151\) 1.89322e9 0.296350 0.148175 0.988961i \(-0.452660\pi\)
0.148175 + 0.988961i \(0.452660\pi\)
\(152\) 0 0
\(153\) −2.89580e9 −0.427225
\(154\) 0 0
\(155\) 1.10306e10 1.53499
\(156\) 0 0
\(157\) 1.42967e10 1.87797 0.938984 0.343961i \(-0.111769\pi\)
0.938984 + 0.343961i \(0.111769\pi\)
\(158\) 0 0
\(159\) −5.62621e9 −0.698118
\(160\) 0 0
\(161\) −8.18208e8 −0.0959726
\(162\) 0 0
\(163\) −1.35312e10 −1.50139 −0.750694 0.660650i \(-0.770281\pi\)
−0.750694 + 0.660650i \(0.770281\pi\)
\(164\) 0 0
\(165\) 8.97260e9 0.942412
\(166\) 0 0
\(167\) 8.67633e9 0.863201 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.27239e9 −0.113799
\(172\) 0 0
\(173\) 2.02999e10 1.72301 0.861504 0.507750i \(-0.169523\pi\)
0.861504 + 0.507750i \(0.169523\pi\)
\(174\) 0 0
\(175\) 9.33156e8 0.0752113
\(176\) 0 0
\(177\) 9.60565e9 0.735609
\(178\) 0 0
\(179\) 1.08759e10 0.791817 0.395908 0.918290i \(-0.370430\pi\)
0.395908 + 0.918290i \(0.370430\pi\)
\(180\) 0 0
\(181\) 1.52561e10 1.05655 0.528275 0.849073i \(-0.322839\pi\)
0.528275 + 0.849073i \(0.322839\pi\)
\(182\) 0 0
\(183\) −2.09458e9 −0.138060
\(184\) 0 0
\(185\) −2.79124e10 −1.75196
\(186\) 0 0
\(187\) −1.37505e10 −0.822300
\(188\) 0 0
\(189\) 2.06424e9 0.117674
\(190\) 0 0
\(191\) −1.20771e9 −0.0656616 −0.0328308 0.999461i \(-0.510452\pi\)
−0.0328308 + 0.999461i \(0.510452\pi\)
\(192\) 0 0
\(193\) 1.46443e10 0.759730 0.379865 0.925042i \(-0.375970\pi\)
0.379865 + 0.925042i \(0.375970\pi\)
\(194\) 0 0
\(195\) 4.37681e9 0.216771
\(196\) 0 0
\(197\) 3.80476e10 1.79982 0.899911 0.436075i \(-0.143632\pi\)
0.899911 + 0.436075i \(0.143632\pi\)
\(198\) 0 0
\(199\) 2.69086e10 1.21633 0.608166 0.793810i \(-0.291905\pi\)
0.608166 + 0.793810i \(0.291905\pi\)
\(200\) 0 0
\(201\) 1.10660e10 0.478197
\(202\) 0 0
\(203\) 2.38765e9 0.0986821
\(204\) 0 0
\(205\) −3.60038e10 −1.42382
\(206\) 0 0
\(207\) 1.34165e10 0.507892
\(208\) 0 0
\(209\) −6.04185e9 −0.219034
\(210\) 0 0
\(211\) 2.87876e10 0.999849 0.499925 0.866069i \(-0.333361\pi\)
0.499925 + 0.866069i \(0.333361\pi\)
\(212\) 0 0
\(213\) −9.65038e9 −0.321245
\(214\) 0 0
\(215\) 4.80797e10 1.53458
\(216\) 0 0
\(217\) 4.64129e9 0.142092
\(218\) 0 0
\(219\) 1.52420e10 0.447760
\(220\) 0 0
\(221\) −6.70743e9 −0.189143
\(222\) 0 0
\(223\) −5.58460e10 −1.51224 −0.756120 0.654433i \(-0.772907\pi\)
−0.756120 + 0.654433i \(0.772907\pi\)
\(224\) 0 0
\(225\) −1.53013e10 −0.398022
\(226\) 0 0
\(227\) 2.12255e10 0.530567 0.265284 0.964170i \(-0.414534\pi\)
0.265284 + 0.964170i \(0.414534\pi\)
\(228\) 0 0
\(229\) 5.16671e10 1.24152 0.620761 0.784000i \(-0.286824\pi\)
0.620761 + 0.784000i \(0.286824\pi\)
\(230\) 0 0
\(231\) 3.77537e9 0.0872380
\(232\) 0 0
\(233\) −6.99428e10 −1.55468 −0.777341 0.629080i \(-0.783432\pi\)
−0.777341 + 0.629080i \(0.783432\pi\)
\(234\) 0 0
\(235\) 5.41729e10 1.15871
\(236\) 0 0
\(237\) −5.18776e10 −1.06810
\(238\) 0 0
\(239\) −9.50597e10 −1.88454 −0.942271 0.334850i \(-0.891314\pi\)
−0.942271 + 0.334850i \(0.891314\pi\)
\(240\) 0 0
\(241\) 5.96117e10 1.13829 0.569147 0.822235i \(-0.307273\pi\)
0.569147 + 0.822235i \(0.307273\pi\)
\(242\) 0 0
\(243\) −5.46589e10 −1.00562
\(244\) 0 0
\(245\) −7.11089e10 −1.26089
\(246\) 0 0
\(247\) −2.94720e9 −0.0503817
\(248\) 0 0
\(249\) 1.72997e10 0.285194
\(250\) 0 0
\(251\) 6.63592e10 1.05528 0.527642 0.849467i \(-0.323076\pi\)
0.527642 + 0.849467i \(0.323076\pi\)
\(252\) 0 0
\(253\) 6.37070e10 0.977563
\(254\) 0 0
\(255\) −3.59887e10 −0.533011
\(256\) 0 0
\(257\) −3.60015e10 −0.514779 −0.257390 0.966308i \(-0.582862\pi\)
−0.257390 + 0.966308i \(0.582862\pi\)
\(258\) 0 0
\(259\) −1.17446e10 −0.162177
\(260\) 0 0
\(261\) −3.91512e10 −0.522231
\(262\) 0 0
\(263\) −5.53571e10 −0.713465 −0.356732 0.934207i \(-0.616109\pi\)
−0.356732 + 0.934207i \(0.616109\pi\)
\(264\) 0 0
\(265\) 1.17266e11 1.46072
\(266\) 0 0
\(267\) −7.39525e10 −0.890537
\(268\) 0 0
\(269\) 9.87231e10 1.14956 0.574782 0.818306i \(-0.305087\pi\)
0.574782 + 0.818306i \(0.305087\pi\)
\(270\) 0 0
\(271\) 1.57825e11 1.77752 0.888760 0.458372i \(-0.151567\pi\)
0.888760 + 0.458372i \(0.151567\pi\)
\(272\) 0 0
\(273\) 1.84161e9 0.0200663
\(274\) 0 0
\(275\) −7.26570e10 −0.766091
\(276\) 0 0
\(277\) 2.52506e10 0.257700 0.128850 0.991664i \(-0.458872\pi\)
0.128850 + 0.991664i \(0.458872\pi\)
\(278\) 0 0
\(279\) −7.61049e10 −0.751958
\(280\) 0 0
\(281\) −7.44249e10 −0.712098 −0.356049 0.934467i \(-0.615876\pi\)
−0.356049 + 0.934467i \(0.615876\pi\)
\(282\) 0 0
\(283\) 1.08399e11 1.00458 0.502291 0.864699i \(-0.332491\pi\)
0.502291 + 0.864699i \(0.332491\pi\)
\(284\) 0 0
\(285\) −1.58132e10 −0.141977
\(286\) 0 0
\(287\) −1.51492e10 −0.131802
\(288\) 0 0
\(289\) −6.34353e10 −0.534922
\(290\) 0 0
\(291\) 1.84423e10 0.150764
\(292\) 0 0
\(293\) 4.84627e10 0.384152 0.192076 0.981380i \(-0.438478\pi\)
0.192076 + 0.981380i \(0.438478\pi\)
\(294\) 0 0
\(295\) −2.00209e11 −1.53916
\(296\) 0 0
\(297\) −1.60725e11 −1.19861
\(298\) 0 0
\(299\) 3.10761e10 0.224857
\(300\) 0 0
\(301\) 2.02303e10 0.142054
\(302\) 0 0
\(303\) −7.55388e10 −0.514847
\(304\) 0 0
\(305\) 4.36569e10 0.288871
\(306\) 0 0
\(307\) 8.71117e10 0.559698 0.279849 0.960044i \(-0.409716\pi\)
0.279849 + 0.960044i \(0.409716\pi\)
\(308\) 0 0
\(309\) −1.43571e11 −0.895887
\(310\) 0 0
\(311\) 1.81111e10 0.109780 0.0548900 0.998492i \(-0.482519\pi\)
0.0548900 + 0.998492i \(0.482519\pi\)
\(312\) 0 0
\(313\) −2.50444e11 −1.47490 −0.737449 0.675403i \(-0.763970\pi\)
−0.737449 + 0.675403i \(0.763970\pi\)
\(314\) 0 0
\(315\) −1.65717e10 −0.0948352
\(316\) 0 0
\(317\) −1.62467e11 −0.903644 −0.451822 0.892108i \(-0.649226\pi\)
−0.451822 + 0.892108i \(0.649226\pi\)
\(318\) 0 0
\(319\) −1.85906e11 −1.00516
\(320\) 0 0
\(321\) −3.03177e10 −0.159376
\(322\) 0 0
\(323\) 2.42336e10 0.123882
\(324\) 0 0
\(325\) −3.54419e10 −0.176214
\(326\) 0 0
\(327\) −1.45033e11 −0.701459
\(328\) 0 0
\(329\) 2.27941e10 0.107261
\(330\) 0 0
\(331\) 6.54231e10 0.299575 0.149787 0.988718i \(-0.452141\pi\)
0.149787 + 0.988718i \(0.452141\pi\)
\(332\) 0 0
\(333\) 1.92581e11 0.858249
\(334\) 0 0
\(335\) −2.30646e11 −1.00056
\(336\) 0 0
\(337\) −8.37766e10 −0.353825 −0.176912 0.984227i \(-0.556611\pi\)
−0.176912 + 0.984227i \(0.556611\pi\)
\(338\) 0 0
\(339\) −1.72751e11 −0.710429
\(340\) 0 0
\(341\) −3.61378e11 −1.44733
\(342\) 0 0
\(343\) −6.02657e10 −0.235097
\(344\) 0 0
\(345\) 1.66739e11 0.633652
\(346\) 0 0
\(347\) −5.18275e11 −1.91901 −0.959506 0.281689i \(-0.909105\pi\)
−0.959506 + 0.281689i \(0.909105\pi\)
\(348\) 0 0
\(349\) 2.77982e11 1.00300 0.501502 0.865157i \(-0.332781\pi\)
0.501502 + 0.865157i \(0.332781\pi\)
\(350\) 0 0
\(351\) −7.84011e10 −0.275702
\(352\) 0 0
\(353\) −1.60940e11 −0.551669 −0.275835 0.961205i \(-0.588954\pi\)
−0.275835 + 0.961205i \(0.588954\pi\)
\(354\) 0 0
\(355\) 2.01141e11 0.672162
\(356\) 0 0
\(357\) −1.51429e10 −0.0493402
\(358\) 0 0
\(359\) 1.45229e11 0.461455 0.230728 0.973018i \(-0.425889\pi\)
0.230728 + 0.973018i \(0.425889\pi\)
\(360\) 0 0
\(361\) −3.12040e11 −0.967002
\(362\) 0 0
\(363\) −9.17717e10 −0.277414
\(364\) 0 0
\(365\) −3.17688e11 −0.936876
\(366\) 0 0
\(367\) 5.88415e11 1.69311 0.846557 0.532298i \(-0.178671\pi\)
0.846557 + 0.532298i \(0.178671\pi\)
\(368\) 0 0
\(369\) 2.48407e11 0.697502
\(370\) 0 0
\(371\) 4.93416e10 0.135217
\(372\) 0 0
\(373\) 2.92744e11 0.783065 0.391533 0.920164i \(-0.371945\pi\)
0.391533 + 0.920164i \(0.371945\pi\)
\(374\) 0 0
\(375\) 1.09142e11 0.285003
\(376\) 0 0
\(377\) −9.06844e10 −0.231205
\(378\) 0 0
\(379\) −1.16451e11 −0.289912 −0.144956 0.989438i \(-0.546304\pi\)
−0.144956 + 0.989438i \(0.546304\pi\)
\(380\) 0 0
\(381\) −2.95340e10 −0.0718059
\(382\) 0 0
\(383\) 3.18071e11 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(384\) 0 0
\(385\) −7.86894e10 −0.182534
\(386\) 0 0
\(387\) −3.31724e11 −0.751757
\(388\) 0 0
\(389\) −1.88045e11 −0.416379 −0.208190 0.978088i \(-0.566757\pi\)
−0.208190 + 0.978088i \(0.566757\pi\)
\(390\) 0 0
\(391\) −2.55526e11 −0.552892
\(392\) 0 0
\(393\) −9.70231e10 −0.205168
\(394\) 0 0
\(395\) 1.08128e12 2.23486
\(396\) 0 0
\(397\) −8.16657e11 −1.64999 −0.824997 0.565137i \(-0.808823\pi\)
−0.824997 + 0.565137i \(0.808823\pi\)
\(398\) 0 0
\(399\) −6.65366e9 −0.0131426
\(400\) 0 0
\(401\) 9.64580e11 1.86290 0.931448 0.363875i \(-0.118546\pi\)
0.931448 + 0.363875i \(0.118546\pi\)
\(402\) 0 0
\(403\) −1.76279e11 −0.332911
\(404\) 0 0
\(405\) 1.30964e10 0.0241882
\(406\) 0 0
\(407\) 9.14453e11 1.65191
\(408\) 0 0
\(409\) 4.92782e11 0.870763 0.435381 0.900246i \(-0.356614\pi\)
0.435381 + 0.900246i \(0.356614\pi\)
\(410\) 0 0
\(411\) 1.03429e10 0.0178794
\(412\) 0 0
\(413\) −8.42412e10 −0.142478
\(414\) 0 0
\(415\) −3.60574e11 −0.596730
\(416\) 0 0
\(417\) 4.29376e11 0.695385
\(418\) 0 0
\(419\) −1.06792e11 −0.169268 −0.0846338 0.996412i \(-0.526972\pi\)
−0.0846338 + 0.996412i \(0.526972\pi\)
\(420\) 0 0
\(421\) −9.06902e10 −0.140699 −0.0703495 0.997522i \(-0.522411\pi\)
−0.0703495 + 0.997522i \(0.522411\pi\)
\(422\) 0 0
\(423\) −3.73764e11 −0.567630
\(424\) 0 0
\(425\) 2.91424e11 0.433287
\(426\) 0 0
\(427\) 1.83694e10 0.0267404
\(428\) 0 0
\(429\) −1.43391e11 −0.204392
\(430\) 0 0
\(431\) −5.39153e11 −0.752600 −0.376300 0.926498i \(-0.622804\pi\)
−0.376300 + 0.926498i \(0.622804\pi\)
\(432\) 0 0
\(433\) 4.68512e11 0.640509 0.320254 0.947332i \(-0.396232\pi\)
0.320254 + 0.947332i \(0.396232\pi\)
\(434\) 0 0
\(435\) −4.86568e11 −0.651541
\(436\) 0 0
\(437\) −1.12276e11 −0.147273
\(438\) 0 0
\(439\) −3.60014e11 −0.462624 −0.231312 0.972880i \(-0.574302\pi\)
−0.231312 + 0.972880i \(0.574302\pi\)
\(440\) 0 0
\(441\) 4.90613e11 0.617682
\(442\) 0 0
\(443\) −1.35127e12 −1.66697 −0.833483 0.552546i \(-0.813656\pi\)
−0.833483 + 0.552546i \(0.813656\pi\)
\(444\) 0 0
\(445\) 1.54138e12 1.86333
\(446\) 0 0
\(447\) 7.54034e11 0.893320
\(448\) 0 0
\(449\) 1.10673e12 1.28509 0.642547 0.766246i \(-0.277878\pi\)
0.642547 + 0.766246i \(0.277878\pi\)
\(450\) 0 0
\(451\) 1.17954e12 1.34251
\(452\) 0 0
\(453\) −1.62336e11 −0.181123
\(454\) 0 0
\(455\) −3.83844e10 −0.0419859
\(456\) 0 0
\(457\) −1.50037e12 −1.60908 −0.804538 0.593901i \(-0.797587\pi\)
−0.804538 + 0.593901i \(0.797587\pi\)
\(458\) 0 0
\(459\) 6.44661e11 0.677913
\(460\) 0 0
\(461\) 1.25558e12 1.29476 0.647382 0.762166i \(-0.275864\pi\)
0.647382 + 0.762166i \(0.275864\pi\)
\(462\) 0 0
\(463\) 4.59412e11 0.464610 0.232305 0.972643i \(-0.425373\pi\)
0.232305 + 0.972643i \(0.425373\pi\)
\(464\) 0 0
\(465\) −9.45825e11 −0.938151
\(466\) 0 0
\(467\) 1.97470e12 1.92121 0.960605 0.277917i \(-0.0896441\pi\)
0.960605 + 0.277917i \(0.0896441\pi\)
\(468\) 0 0
\(469\) −9.70481e10 −0.0926210
\(470\) 0 0
\(471\) −1.22589e12 −1.14777
\(472\) 0 0
\(473\) −1.57516e12 −1.44694
\(474\) 0 0
\(475\) 1.28050e11 0.115414
\(476\) 0 0
\(477\) −8.09073e11 −0.715575
\(478\) 0 0
\(479\) −1.97850e12 −1.71723 −0.858613 0.512625i \(-0.828673\pi\)
−0.858613 + 0.512625i \(0.828673\pi\)
\(480\) 0 0
\(481\) 4.46067e11 0.379968
\(482\) 0 0
\(483\) 7.01580e10 0.0586564
\(484\) 0 0
\(485\) −3.84390e11 −0.315453
\(486\) 0 0
\(487\) −8.70430e11 −0.701219 −0.350609 0.936522i \(-0.614026\pi\)
−0.350609 + 0.936522i \(0.614026\pi\)
\(488\) 0 0
\(489\) 1.16025e12 0.917616
\(490\) 0 0
\(491\) 9.15629e11 0.710973 0.355486 0.934681i \(-0.384315\pi\)
0.355486 + 0.934681i \(0.384315\pi\)
\(492\) 0 0
\(493\) 7.45662e11 0.568501
\(494\) 0 0
\(495\) 1.29030e12 0.965977
\(496\) 0 0
\(497\) 8.46335e10 0.0622212
\(498\) 0 0
\(499\) 1.04001e12 0.750906 0.375453 0.926841i \(-0.377487\pi\)
0.375453 + 0.926841i \(0.377487\pi\)
\(500\) 0 0
\(501\) −7.43960e11 −0.527570
\(502\) 0 0
\(503\) −1.96238e11 −0.136687 −0.0683435 0.997662i \(-0.521771\pi\)
−0.0683435 + 0.997662i \(0.521771\pi\)
\(504\) 0 0
\(505\) 1.57444e12 1.07725
\(506\) 0 0
\(507\) −6.99456e10 −0.0470137
\(508\) 0 0
\(509\) −9.33446e11 −0.616395 −0.308197 0.951322i \(-0.599726\pi\)
−0.308197 + 0.951322i \(0.599726\pi\)
\(510\) 0 0
\(511\) −1.33672e11 −0.0867256
\(512\) 0 0
\(513\) 2.83259e11 0.180574
\(514\) 0 0
\(515\) 2.99243e12 1.87452
\(516\) 0 0
\(517\) −1.77479e12 −1.09254
\(518\) 0 0
\(519\) −1.74064e12 −1.05307
\(520\) 0 0
\(521\) −2.60930e12 −1.55151 −0.775754 0.631036i \(-0.782630\pi\)
−0.775754 + 0.631036i \(0.782630\pi\)
\(522\) 0 0
\(523\) −1.76867e12 −1.03368 −0.516842 0.856081i \(-0.672893\pi\)
−0.516842 + 0.856081i \(0.672893\pi\)
\(524\) 0 0
\(525\) −8.00144e10 −0.0459675
\(526\) 0 0
\(527\) 1.44947e12 0.818582
\(528\) 0 0
\(529\) −6.17280e11 −0.342714
\(530\) 0 0
\(531\) 1.38133e12 0.754003
\(532\) 0 0
\(533\) 5.75376e11 0.308802
\(534\) 0 0
\(535\) 6.31908e11 0.333474
\(536\) 0 0
\(537\) −9.32560e11 −0.483941
\(538\) 0 0
\(539\) 2.32964e12 1.18888
\(540\) 0 0
\(541\) 3.95324e12 1.98411 0.992056 0.125800i \(-0.0401499\pi\)
0.992056 + 0.125800i \(0.0401499\pi\)
\(542\) 0 0
\(543\) −1.30815e12 −0.645740
\(544\) 0 0
\(545\) 3.02290e12 1.46771
\(546\) 0 0
\(547\) 2.49418e12 1.19120 0.595601 0.803281i \(-0.296914\pi\)
0.595601 + 0.803281i \(0.296914\pi\)
\(548\) 0 0
\(549\) −3.01209e11 −0.141512
\(550\) 0 0
\(551\) 3.27639e11 0.151430
\(552\) 0 0
\(553\) 4.54965e11 0.206878
\(554\) 0 0
\(555\) 2.39338e12 1.07076
\(556\) 0 0
\(557\) 2.22532e12 0.979588 0.489794 0.871838i \(-0.337072\pi\)
0.489794 + 0.871838i \(0.337072\pi\)
\(558\) 0 0
\(559\) −7.68360e11 −0.332822
\(560\) 0 0
\(561\) 1.17905e12 0.502572
\(562\) 0 0
\(563\) 3.00484e12 1.26047 0.630237 0.776403i \(-0.282958\pi\)
0.630237 + 0.776403i \(0.282958\pi\)
\(564\) 0 0
\(565\) 3.60061e12 1.48648
\(566\) 0 0
\(567\) 5.51051e9 0.00223907
\(568\) 0 0
\(569\) 3.35545e12 1.34198 0.670989 0.741467i \(-0.265870\pi\)
0.670989 + 0.741467i \(0.265870\pi\)
\(570\) 0 0
\(571\) −2.15636e12 −0.848903 −0.424451 0.905451i \(-0.639533\pi\)
−0.424451 + 0.905451i \(0.639533\pi\)
\(572\) 0 0
\(573\) 1.03556e11 0.0401310
\(574\) 0 0
\(575\) −1.35019e12 −0.515098
\(576\) 0 0
\(577\) −2.02642e12 −0.761095 −0.380547 0.924761i \(-0.624264\pi\)
−0.380547 + 0.924761i \(0.624264\pi\)
\(578\) 0 0
\(579\) −1.25569e12 −0.464331
\(580\) 0 0
\(581\) −1.51717e11 −0.0552386
\(582\) 0 0
\(583\) −3.84182e12 −1.37730
\(584\) 0 0
\(585\) 6.29404e11 0.222192
\(586\) 0 0
\(587\) 1.74926e12 0.608112 0.304056 0.952654i \(-0.401659\pi\)
0.304056 + 0.952654i \(0.401659\pi\)
\(588\) 0 0
\(589\) 6.36887e11 0.218044
\(590\) 0 0
\(591\) −3.26243e12 −1.10001
\(592\) 0 0
\(593\) 2.36850e12 0.786551 0.393275 0.919421i \(-0.371342\pi\)
0.393275 + 0.919421i \(0.371342\pi\)
\(594\) 0 0
\(595\) 3.15620e11 0.103238
\(596\) 0 0
\(597\) −2.30730e12 −0.743396
\(598\) 0 0
\(599\) −3.95956e12 −1.25668 −0.628342 0.777937i \(-0.716266\pi\)
−0.628342 + 0.777937i \(0.716266\pi\)
\(600\) 0 0
\(601\) −1.46479e12 −0.457974 −0.228987 0.973429i \(-0.573541\pi\)
−0.228987 + 0.973429i \(0.573541\pi\)
\(602\) 0 0
\(603\) 1.59133e12 0.490155
\(604\) 0 0
\(605\) 1.91278e12 0.580452
\(606\) 0 0
\(607\) −2.37878e12 −0.711221 −0.355610 0.934634i \(-0.615727\pi\)
−0.355610 + 0.934634i \(0.615727\pi\)
\(608\) 0 0
\(609\) −2.04731e11 −0.0603124
\(610\) 0 0
\(611\) −8.65735e11 −0.251304
\(612\) 0 0
\(613\) −3.04291e12 −0.870397 −0.435198 0.900335i \(-0.643322\pi\)
−0.435198 + 0.900335i \(0.643322\pi\)
\(614\) 0 0
\(615\) 3.08718e12 0.870211
\(616\) 0 0
\(617\) −6.91186e12 −1.92005 −0.960024 0.279918i \(-0.909693\pi\)
−0.960024 + 0.279918i \(0.909693\pi\)
\(618\) 0 0
\(619\) 9.28522e10 0.0254205 0.0127103 0.999919i \(-0.495954\pi\)
0.0127103 + 0.999919i \(0.495954\pi\)
\(620\) 0 0
\(621\) −2.98677e12 −0.805914
\(622\) 0 0
\(623\) 6.48561e11 0.172486
\(624\) 0 0
\(625\) −4.69849e12 −1.23168
\(626\) 0 0
\(627\) 5.18064e11 0.133869
\(628\) 0 0
\(629\) −3.66784e12 −0.934290
\(630\) 0 0
\(631\) −3.44921e12 −0.866139 −0.433070 0.901360i \(-0.642570\pi\)
−0.433070 + 0.901360i \(0.642570\pi\)
\(632\) 0 0
\(633\) −2.46842e12 −0.611086
\(634\) 0 0
\(635\) 6.15573e11 0.150244
\(636\) 0 0
\(637\) 1.13639e12 0.273464
\(638\) 0 0
\(639\) −1.38777e12 −0.329278
\(640\) 0 0
\(641\) 1.38534e12 0.324111 0.162056 0.986782i \(-0.448188\pi\)
0.162056 + 0.986782i \(0.448188\pi\)
\(642\) 0 0
\(643\) 1.95260e12 0.450468 0.225234 0.974305i \(-0.427685\pi\)
0.225234 + 0.974305i \(0.427685\pi\)
\(644\) 0 0
\(645\) −4.12264e12 −0.937900
\(646\) 0 0
\(647\) −7.01375e11 −0.157355 −0.0786775 0.996900i \(-0.525070\pi\)
−0.0786775 + 0.996900i \(0.525070\pi\)
\(648\) 0 0
\(649\) 6.55915e12 1.45126
\(650\) 0 0
\(651\) −3.97971e11 −0.0868435
\(652\) 0 0
\(653\) 2.16551e12 0.466070 0.233035 0.972468i \(-0.425134\pi\)
0.233035 + 0.972468i \(0.425134\pi\)
\(654\) 0 0
\(655\) 2.02224e12 0.429285
\(656\) 0 0
\(657\) 2.19187e12 0.458956
\(658\) 0 0
\(659\) −6.99434e12 −1.44465 −0.722325 0.691554i \(-0.756926\pi\)
−0.722325 + 0.691554i \(0.756926\pi\)
\(660\) 0 0
\(661\) −7.13364e12 −1.45347 −0.726733 0.686920i \(-0.758962\pi\)
−0.726733 + 0.686920i \(0.758962\pi\)
\(662\) 0 0
\(663\) 5.75135e11 0.115600
\(664\) 0 0
\(665\) 1.38681e11 0.0274992
\(666\) 0 0
\(667\) −3.45471e12 −0.675843
\(668\) 0 0
\(669\) 4.78857e12 0.924248
\(670\) 0 0
\(671\) −1.43027e12 −0.272374
\(672\) 0 0
\(673\) −5.90336e12 −1.10925 −0.554627 0.832099i \(-0.687139\pi\)
−0.554627 + 0.832099i \(0.687139\pi\)
\(674\) 0 0
\(675\) 3.40637e12 0.631574
\(676\) 0 0
\(677\) 4.09197e12 0.748657 0.374329 0.927296i \(-0.377873\pi\)
0.374329 + 0.927296i \(0.377873\pi\)
\(678\) 0 0
\(679\) −1.61738e11 −0.0292011
\(680\) 0 0
\(681\) −1.82000e12 −0.324271
\(682\) 0 0
\(683\) 1.90878e12 0.335631 0.167816 0.985818i \(-0.446329\pi\)
0.167816 + 0.985818i \(0.446329\pi\)
\(684\) 0 0
\(685\) −2.15575e11 −0.0374102
\(686\) 0 0
\(687\) −4.43024e12 −0.758791
\(688\) 0 0
\(689\) −1.87403e12 −0.316803
\(690\) 0 0
\(691\) 1.26665e12 0.211352 0.105676 0.994401i \(-0.466299\pi\)
0.105676 + 0.994401i \(0.466299\pi\)
\(692\) 0 0
\(693\) 5.42914e11 0.0894194
\(694\) 0 0
\(695\) −8.94941e12 −1.45500
\(696\) 0 0
\(697\) −4.73109e12 −0.759301
\(698\) 0 0
\(699\) 5.99731e12 0.950188
\(700\) 0 0
\(701\) −5.95358e12 −0.931208 −0.465604 0.884993i \(-0.654163\pi\)
−0.465604 + 0.884993i \(0.654163\pi\)
\(702\) 0 0
\(703\) −1.61162e12 −0.248865
\(704\) 0 0
\(705\) −4.64510e12 −0.708181
\(706\) 0 0
\(707\) 6.62473e11 0.0997196
\(708\) 0 0
\(709\) 8.83324e11 0.131284 0.0656420 0.997843i \(-0.479090\pi\)
0.0656420 + 0.997843i \(0.479090\pi\)
\(710\) 0 0
\(711\) −7.46022e12 −1.09481
\(712\) 0 0
\(713\) −6.71552e12 −0.973143
\(714\) 0 0
\(715\) 2.98867e12 0.427662
\(716\) 0 0
\(717\) 8.15099e12 1.15179
\(718\) 0 0
\(719\) −2.53369e12 −0.353568 −0.176784 0.984250i \(-0.556569\pi\)
−0.176784 + 0.984250i \(0.556569\pi\)
\(720\) 0 0
\(721\) 1.25911e12 0.173522
\(722\) 0 0
\(723\) −5.11146e12 −0.695701
\(724\) 0 0
\(725\) 3.94006e12 0.529641
\(726\) 0 0
\(727\) 8.73905e12 1.16027 0.580135 0.814520i \(-0.303000\pi\)
0.580135 + 0.814520i \(0.303000\pi\)
\(728\) 0 0
\(729\) 4.54255e12 0.595697
\(730\) 0 0
\(731\) 6.31792e12 0.818363
\(732\) 0 0
\(733\) −2.45358e12 −0.313930 −0.156965 0.987604i \(-0.550171\pi\)
−0.156965 + 0.987604i \(0.550171\pi\)
\(734\) 0 0
\(735\) 6.09730e12 0.770627
\(736\) 0 0
\(737\) 7.55632e12 0.943423
\(738\) 0 0
\(739\) −1.44149e13 −1.77792 −0.888960 0.457985i \(-0.848571\pi\)
−0.888960 + 0.457985i \(0.848571\pi\)
\(740\) 0 0
\(741\) 2.52710e11 0.0307922
\(742\) 0 0
\(743\) −2.25852e12 −0.271878 −0.135939 0.990717i \(-0.543405\pi\)
−0.135939 + 0.990717i \(0.543405\pi\)
\(744\) 0 0
\(745\) −1.57162e13 −1.86915
\(746\) 0 0
\(747\) 2.48777e12 0.292325
\(748\) 0 0
\(749\) 2.65885e11 0.0308693
\(750\) 0 0
\(751\) −5.94360e12 −0.681821 −0.340910 0.940096i \(-0.610735\pi\)
−0.340910 + 0.940096i \(0.610735\pi\)
\(752\) 0 0
\(753\) −5.69003e12 −0.644967
\(754\) 0 0
\(755\) 3.38354e12 0.378975
\(756\) 0 0
\(757\) −5.15480e12 −0.570533 −0.285266 0.958448i \(-0.592082\pi\)
−0.285266 + 0.958448i \(0.592082\pi\)
\(758\) 0 0
\(759\) −5.46261e12 −0.597465
\(760\) 0 0
\(761\) 6.04018e11 0.0652858 0.0326429 0.999467i \(-0.489608\pi\)
0.0326429 + 0.999467i \(0.489608\pi\)
\(762\) 0 0
\(763\) 1.27193e12 0.135864
\(764\) 0 0
\(765\) −5.17534e12 −0.546339
\(766\) 0 0
\(767\) 3.19953e12 0.333816
\(768\) 0 0
\(769\) 1.50501e12 0.155193 0.0775963 0.996985i \(-0.475275\pi\)
0.0775963 + 0.996985i \(0.475275\pi\)
\(770\) 0 0
\(771\) 3.08698e12 0.314622
\(772\) 0 0
\(773\) 7.53437e12 0.758996 0.379498 0.925193i \(-0.376097\pi\)
0.379498 + 0.925193i \(0.376097\pi\)
\(774\) 0 0
\(775\) 7.65896e12 0.762627
\(776\) 0 0
\(777\) 1.00705e12 0.0991191
\(778\) 0 0
\(779\) −2.07881e12 −0.202253
\(780\) 0 0
\(781\) −6.58970e12 −0.633776
\(782\) 0 0
\(783\) 8.71581e12 0.828667
\(784\) 0 0
\(785\) 2.55509e13 2.40156
\(786\) 0 0
\(787\) 4.10896e12 0.381809 0.190904 0.981609i \(-0.438858\pi\)
0.190904 + 0.981609i \(0.438858\pi\)
\(788\) 0 0
\(789\) 4.74665e12 0.436054
\(790\) 0 0
\(791\) 1.51502e12 0.137601
\(792\) 0 0
\(793\) −6.97680e11 −0.0626508
\(794\) 0 0
\(795\) −1.00551e13 −0.892759
\(796\) 0 0
\(797\) −3.53460e12 −0.310297 −0.155149 0.987891i \(-0.549586\pi\)
−0.155149 + 0.987891i \(0.549586\pi\)
\(798\) 0 0
\(799\) 7.11860e12 0.617922
\(800\) 0 0
\(801\) −1.06347e13 −0.912806
\(802\) 0 0
\(803\) 1.04079e13 0.883373
\(804\) 0 0
\(805\) −1.46229e12 −0.122731
\(806\) 0 0
\(807\) −8.46510e12 −0.702589
\(808\) 0 0
\(809\) 8.96434e12 0.735783 0.367892 0.929869i \(-0.380080\pi\)
0.367892 + 0.929869i \(0.380080\pi\)
\(810\) 0 0
\(811\) 8.61534e12 0.699324 0.349662 0.936876i \(-0.386296\pi\)
0.349662 + 0.936876i \(0.386296\pi\)
\(812\) 0 0
\(813\) −1.35329e13 −1.08638
\(814\) 0 0
\(815\) −2.41829e13 −1.91999
\(816\) 0 0
\(817\) 2.77605e12 0.217986
\(818\) 0 0
\(819\) 2.64832e11 0.0205680
\(820\) 0 0
\(821\) 2.09873e13 1.61218 0.806088 0.591796i \(-0.201581\pi\)
0.806088 + 0.591796i \(0.201581\pi\)
\(822\) 0 0
\(823\) −1.47480e13 −1.12056 −0.560280 0.828304i \(-0.689306\pi\)
−0.560280 + 0.828304i \(0.689306\pi\)
\(824\) 0 0
\(825\) 6.23004e12 0.468218
\(826\) 0 0
\(827\) −1.00085e13 −0.744037 −0.372018 0.928225i \(-0.621334\pi\)
−0.372018 + 0.928225i \(0.621334\pi\)
\(828\) 0 0
\(829\) 8.15300e12 0.599546 0.299773 0.954011i \(-0.403089\pi\)
0.299773 + 0.954011i \(0.403089\pi\)
\(830\) 0 0
\(831\) −2.16514e12 −0.157500
\(832\) 0 0
\(833\) −9.34407e12 −0.672409
\(834\) 0 0
\(835\) 1.55062e13 1.10387
\(836\) 0 0
\(837\) 1.69424e13 1.19319
\(838\) 0 0
\(839\) −1.94338e13 −1.35403 −0.677017 0.735968i \(-0.736728\pi\)
−0.677017 + 0.735968i \(0.736728\pi\)
\(840\) 0 0
\(841\) −4.42580e12 −0.305077
\(842\) 0 0
\(843\) 6.38163e12 0.435219
\(844\) 0 0
\(845\) 1.45786e12 0.0983698
\(846\) 0 0
\(847\) 8.04834e11 0.0537318
\(848\) 0 0
\(849\) −9.29475e12 −0.613979
\(850\) 0 0
\(851\) 1.69934e13 1.11070
\(852\) 0 0
\(853\) −8.40777e12 −0.543764 −0.271882 0.962331i \(-0.587646\pi\)
−0.271882 + 0.962331i \(0.587646\pi\)
\(854\) 0 0
\(855\) −2.27400e12 −0.145527
\(856\) 0 0
\(857\) 1.57510e13 0.997458 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(858\) 0 0
\(859\) −3.45790e12 −0.216692 −0.108346 0.994113i \(-0.534555\pi\)
−0.108346 + 0.994113i \(0.534555\pi\)
\(860\) 0 0
\(861\) 1.29898e12 0.0805544
\(862\) 0 0
\(863\) −5.82263e12 −0.357331 −0.178665 0.983910i \(-0.557178\pi\)
−0.178665 + 0.983910i \(0.557178\pi\)
\(864\) 0 0
\(865\) 3.62798e13 2.20340
\(866\) 0 0
\(867\) 5.43932e12 0.326933
\(868\) 0 0
\(869\) −3.54243e13 −2.10723
\(870\) 0 0
\(871\) 3.68595e12 0.217004
\(872\) 0 0
\(873\) 2.65208e12 0.154534
\(874\) 0 0
\(875\) −9.57168e11 −0.0552016
\(876\) 0 0
\(877\) −5.98999e12 −0.341923 −0.170961 0.985278i \(-0.554687\pi\)
−0.170961 + 0.985278i \(0.554687\pi\)
\(878\) 0 0
\(879\) −4.15548e12 −0.234785
\(880\) 0 0
\(881\) −2.57327e13 −1.43911 −0.719554 0.694437i \(-0.755654\pi\)
−0.719554 + 0.694437i \(0.755654\pi\)
\(882\) 0 0
\(883\) 3.22167e13 1.78344 0.891719 0.452590i \(-0.149500\pi\)
0.891719 + 0.452590i \(0.149500\pi\)
\(884\) 0 0
\(885\) 1.71671e13 0.940702
\(886\) 0 0
\(887\) 1.54777e13 0.839557 0.419779 0.907627i \(-0.362108\pi\)
0.419779 + 0.907627i \(0.362108\pi\)
\(888\) 0 0
\(889\) 2.59012e11 0.0139079
\(890\) 0 0
\(891\) −4.29057e11 −0.0228068
\(892\) 0 0
\(893\) 3.12786e12 0.164595
\(894\) 0 0
\(895\) 1.94372e13 1.01258
\(896\) 0 0
\(897\) −2.66465e12 −0.137427
\(898\) 0 0
\(899\) 1.95968e13 1.00062
\(900\) 0 0
\(901\) 1.54094e13 0.778975
\(902\) 0 0
\(903\) −1.73467e12 −0.0868203
\(904\) 0 0
\(905\) 2.72655e13 1.35112
\(906\) 0 0
\(907\) 4.09617e12 0.200977 0.100488 0.994938i \(-0.467960\pi\)
0.100488 + 0.994938i \(0.467960\pi\)
\(908\) 0 0
\(909\) −1.08628e13 −0.527721
\(910\) 0 0
\(911\) 3.19819e13 1.53841 0.769204 0.639003i \(-0.220653\pi\)
0.769204 + 0.639003i \(0.220653\pi\)
\(912\) 0 0
\(913\) 1.18130e13 0.562652
\(914\) 0 0
\(915\) −3.74340e12 −0.176552
\(916\) 0 0
\(917\) 8.50889e11 0.0397384
\(918\) 0 0
\(919\) 3.05636e13 1.41347 0.706733 0.707481i \(-0.250168\pi\)
0.706733 + 0.707481i \(0.250168\pi\)
\(920\) 0 0
\(921\) −7.46947e12 −0.342075
\(922\) 0 0
\(923\) −3.21443e12 −0.145780
\(924\) 0 0
\(925\) −1.93807e13 −0.870427
\(926\) 0 0
\(927\) −2.06461e13 −0.918289
\(928\) 0 0
\(929\) −1.96670e13 −0.866300 −0.433150 0.901322i \(-0.642598\pi\)
−0.433150 + 0.901322i \(0.642598\pi\)
\(930\) 0 0
\(931\) −4.10572e12 −0.179108
\(932\) 0 0
\(933\) −1.55295e12 −0.0670952
\(934\) 0 0
\(935\) −2.45747e13 −1.05156
\(936\) 0 0
\(937\) 5.88474e12 0.249401 0.124701 0.992194i \(-0.460203\pi\)
0.124701 + 0.992194i \(0.460203\pi\)
\(938\) 0 0
\(939\) 2.14746e13 0.901425
\(940\) 0 0
\(941\) −1.79868e13 −0.747827 −0.373914 0.927464i \(-0.621984\pi\)
−0.373914 + 0.927464i \(0.621984\pi\)
\(942\) 0 0
\(943\) 2.19195e13 0.902669
\(944\) 0 0
\(945\) 3.68918e12 0.150483
\(946\) 0 0
\(947\) 1.42787e13 0.576917 0.288459 0.957492i \(-0.406857\pi\)
0.288459 + 0.957492i \(0.406857\pi\)
\(948\) 0 0
\(949\) 5.07695e12 0.203191
\(950\) 0 0
\(951\) 1.39308e13 0.552287
\(952\) 0 0
\(953\) −4.85651e11 −0.0190724 −0.00953622 0.999955i \(-0.503036\pi\)
−0.00953622 + 0.999955i \(0.503036\pi\)
\(954\) 0 0
\(955\) −2.15840e12 −0.0839686
\(956\) 0 0
\(957\) 1.59407e13 0.614333
\(958\) 0 0
\(959\) −9.07066e10 −0.00346302
\(960\) 0 0
\(961\) 1.16541e13 0.440783
\(962\) 0 0
\(963\) −4.35982e12 −0.163362
\(964\) 0 0
\(965\) 2.61720e13 0.971549
\(966\) 0 0
\(967\) −3.93014e13 −1.44540 −0.722702 0.691160i \(-0.757100\pi\)
−0.722702 + 0.691160i \(0.757100\pi\)
\(968\) 0 0
\(969\) −2.07794e12 −0.0757138
\(970\) 0 0
\(971\) −7.17694e12 −0.259091 −0.129546 0.991573i \(-0.541352\pi\)
−0.129546 + 0.991573i \(0.541352\pi\)
\(972\) 0 0
\(973\) −3.76561e12 −0.134688
\(974\) 0 0
\(975\) 3.03899e12 0.107698
\(976\) 0 0
\(977\) 2.36882e13 0.831775 0.415888 0.909416i \(-0.363471\pi\)
0.415888 + 0.909416i \(0.363471\pi\)
\(978\) 0 0
\(979\) −5.04979e13 −1.75692
\(980\) 0 0
\(981\) −2.08564e13 −0.718999
\(982\) 0 0
\(983\) −2.27685e12 −0.0777755 −0.0388877 0.999244i \(-0.512381\pi\)
−0.0388877 + 0.999244i \(0.512381\pi\)
\(984\) 0 0
\(985\) 6.79982e13 2.30163
\(986\) 0 0
\(987\) −1.95450e12 −0.0655555
\(988\) 0 0
\(989\) −2.92714e13 −0.972883
\(990\) 0 0
\(991\) −5.41684e13 −1.78408 −0.892041 0.451955i \(-0.850727\pi\)
−0.892041 + 0.451955i \(0.850727\pi\)
\(992\) 0 0
\(993\) −5.60976e12 −0.183094
\(994\) 0 0
\(995\) 4.80908e13 1.55546
\(996\) 0 0
\(997\) 2.39920e12 0.0769020 0.0384510 0.999260i \(-0.487758\pi\)
0.0384510 + 0.999260i \(0.487758\pi\)
\(998\) 0 0
\(999\) −4.28722e13 −1.36185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.d.1.2 3
4.3 odd 2 26.10.a.e.1.2 3
12.11 even 2 234.10.a.k.1.1 3
52.51 odd 2 338.10.a.e.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.e.1.2 3 4.3 odd 2
208.10.a.d.1.2 3 1.1 even 1 trivial
234.10.a.k.1.1 3 12.11 even 2
338.10.a.e.1.2 3 52.51 odd 2