Properties

Label 2-338-1.1-c9-0-108
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $174.082$
Root an. cond. $13.1940$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·2-s + 240.·3-s + 256·4-s − 622.·5-s + 3.85e3·6-s − 1.01e4·7-s + 4.09e3·8-s + 3.83e4·9-s − 9.96e3·10-s − 3.09e3·11-s + 6.16e4·12-s − 1.61e5·14-s − 1.50e5·15-s + 6.55e4·16-s − 2.63e5·17-s + 6.13e5·18-s + 5.27e5·19-s − 1.59e5·20-s − 2.43e6·21-s − 4.95e4·22-s + 1.89e6·23-s + 9.86e5·24-s − 1.56e6·25-s + 4.50e6·27-s − 2.58e6·28-s − 4.41e6·29-s − 2.40e6·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.71·3-s + 0.5·4-s − 0.445·5-s + 1.21·6-s − 1.59·7-s + 0.353·8-s + 1.94·9-s − 0.315·10-s − 0.0637·11-s + 0.858·12-s − 1.12·14-s − 0.765·15-s + 0.250·16-s − 0.764·17-s + 1.37·18-s + 0.928·19-s − 0.222·20-s − 2.73·21-s − 0.0450·22-s + 1.41·23-s + 0.607·24-s − 0.801·25-s + 1.63·27-s − 0.795·28-s − 1.15·29-s − 0.541·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(174.082\)
Root analytic conductor: \(13.1940\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 16T \)
13 \( 1 \)
good3 \( 1 - 240.T + 1.96e4T^{2} \)
5 \( 1 + 622.T + 1.95e6T^{2} \)
7 \( 1 + 1.01e4T + 4.03e7T^{2} \)
11 \( 1 + 3.09e3T + 2.35e9T^{2} \)
17 \( 1 + 2.63e5T + 1.18e11T^{2} \)
19 \( 1 - 5.27e5T + 3.22e11T^{2} \)
23 \( 1 - 1.89e6T + 1.80e12T^{2} \)
29 \( 1 + 4.41e6T + 1.45e13T^{2} \)
31 \( 1 + 9.81e6T + 2.64e13T^{2} \)
37 \( 1 + 4.28e6T + 1.29e14T^{2} \)
41 \( 1 + 2.08e7T + 3.27e14T^{2} \)
43 \( 1 + 3.93e6T + 5.02e14T^{2} \)
47 \( 1 - 2.78e7T + 1.11e15T^{2} \)
53 \( 1 - 2.23e7T + 3.29e15T^{2} \)
59 \( 1 + 7.66e4T + 8.66e15T^{2} \)
61 \( 1 - 5.80e7T + 1.16e16T^{2} \)
67 \( 1 + 1.86e8T + 2.72e16T^{2} \)
71 \( 1 + 3.61e8T + 4.58e16T^{2} \)
73 \( 1 + 2.11e8T + 5.88e16T^{2} \)
79 \( 1 + 2.10e8T + 1.19e17T^{2} \)
83 \( 1 + 4.38e8T + 1.86e17T^{2} \)
89 \( 1 + 9.65e8T + 3.50e17T^{2} \)
97 \( 1 + 4.97e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.334590923871474525480243695151, −8.771495804740280799487505006976, −7.37558617096884798737812638256, −7.05028536947065680223560958089, −5.61750915012586520836880218465, −4.11947118373341757537485467031, −3.40174600400432903921925728661, −2.85226297050499863679895496632, −1.69823388249055958804210361290, 0, 1.69823388249055958804210361290, 2.85226297050499863679895496632, 3.40174600400432903921925728661, 4.11947118373341757537485467031, 5.61750915012586520836880218465, 7.05028536947065680223560958089, 7.37558617096884798737812638256, 8.771495804740280799487505006976, 9.334590923871474525480243695151

Graph of the $Z$-function along the critical line