Properties

Label 338.10.a.j
Level $338$
Weight $10$
Character orbit 338.a
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,10,Mod(1,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 60825x^{3} - 355103x^{2} + 717146696x - 24400132848 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16 q^{2} + (\beta_1 + 16) q^{3} + 256 q^{4} + (\beta_{3} - 4 \beta_1 + 243) q^{5} + (16 \beta_1 + 256) q^{6} + (\beta_{4} - 4 \beta_{3} + \beta_{2} + \cdots - 1740) q^{7} + 4096 q^{8} + ( - 4 \beta_{4} - \beta_{3} + \cdots + 4899) q^{9}+ \cdots + (172989 \beta_{4} + 360306 \beta_{3} + \cdots + 164300601) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 80 q^{2} + 81 q^{3} + 1280 q^{4} + 1213 q^{5} + 1296 q^{6} - 8715 q^{7} + 20480 q^{8} + 24548 q^{9} + 19408 q^{10} + 4392 q^{11} + 20736 q^{12} - 139440 q^{14} - 423805 q^{15} + 327680 q^{16} - 537741 q^{17}+ \cdots + 821395368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 60825x^{3} - 355103x^{2} + 717146696x - 24400132848 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 78\nu^{3} + 37069\nu^{2} - 1272330\nu - 14622936 ) / 17040 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -11\nu^{4} + 2278\nu^{3} + 288479\nu^{2} - 65543050\nu + 2397414024 ) / 460080 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 23\nu^{4} - 2149\nu^{3} - 937787\nu^{2} + 43530685\nu + 2494737468 ) / 460080 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -4\beta_{4} - \beta_{3} - 3\beta_{2} + 12\beta _1 + 24326 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -336\beta_{4} + 240\beta_{3} - 384\beta_{2} + 37309\beta _1 + 241788 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -174484\beta_{4} - 18349\beta_{3} - 158199\beta_{2} + 2082600\beta _1 + 905977022 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−178.362
−173.164
40.1848
87.3977
224.943
16.0000 −162.362 256.000 −767.912 −2597.79 2969.95 4096.00 6678.30 −12286.6
1.2 16.0000 −157.164 256.000 2410.25 −2514.62 −9056.75 4096.00 5017.43 38563.9
1.3 16.0000 56.1848 256.000 839.868 898.956 627.345 4096.00 −16526.3 13437.9
1.4 16.0000 103.398 256.000 −646.596 1654.36 6855.66 4096.00 −8991.91 −10345.5
1.5 16.0000 240.943 256.000 −622.606 3855.09 −10111.2 4096.00 38370.4 −9961.70
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.10.a.j 5
13.b even 2 1 338.10.a.g 5
13.d odd 4 2 26.10.b.a 10
39.f even 4 2 234.10.b.a 10
52.f even 4 2 208.10.f.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.b.a 10 13.d odd 4 2
208.10.f.a 10 52.f even 4 2
234.10.b.a 10 39.f even 4 2
338.10.a.g 5 13.b even 2 1
338.10.a.j 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{5} - 81T_{3}^{4} - 58201T_{3}^{3} + 2522001T_{3}^{2} + 682140456T_{3} - 35717361264 \) Copy content Toggle raw display
\( T_{5}^{5} - 1213T_{5}^{4} - 3219353T_{5}^{3} - 43240635T_{5}^{2} + 1783123495200T_{5} + 625791896442000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 16)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots - 35717361264 \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots + 625791896442000 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 11\!\cdots\!20 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 44\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 30\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 21\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 55\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 79\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 84\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 61\!\cdots\!48 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 62\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 87\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 22\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 87\!\cdots\!08 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 59\!\cdots\!76 \) Copy content Toggle raw display
show more
show less