[N,k,chi] = [338,10,Mod(1,338)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(338, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("338.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − x 4 − 60825 x 3 − 355103 x 2 + 717146696 x − 24400132848 x^{5} - x^{4} - 60825x^{3} - 355103x^{2} + 717146696x - 24400132848 x 5 − x 4 − 6 0 8 2 5 x 3 − 3 5 5 1 0 3 x 2 + 7 1 7 1 4 6 6 9 6 x − 2 4 4 0 0 1 3 2 8 4 8
x^5 - x^4 - 60825*x^3 - 355103*x^2 + 717146696*x - 24400132848
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 4 + 78 ν 3 + 37069 ν 2 − 1272330 ν − 14622936 ) / 17040 ( -\nu^{4} + 78\nu^{3} + 37069\nu^{2} - 1272330\nu - 14622936 ) / 17040 ( − ν 4 + 7 8 ν 3 + 3 7 0 6 9 ν 2 − 1 2 7 2 3 3 0 ν − 1 4 6 2 2 9 3 6 ) / 1 7 0 4 0
(-v^4 + 78*v^3 + 37069*v^2 - 1272330*v - 14622936) / 17040
β 3 \beta_{3} β 3 = = =
( − 11 ν 4 + 2278 ν 3 + 288479 ν 2 − 65543050 ν + 2397414024 ) / 460080 ( -11\nu^{4} + 2278\nu^{3} + 288479\nu^{2} - 65543050\nu + 2397414024 ) / 460080 ( − 1 1 ν 4 + 2 2 7 8 ν 3 + 2 8 8 4 7 9 ν 2 − 6 5 5 4 3 0 5 0 ν + 2 3 9 7 4 1 4 0 2 4 ) / 4 6 0 0 8 0
(-11*v^4 + 2278*v^3 + 288479*v^2 - 65543050*v + 2397414024) / 460080
β 4 \beta_{4} β 4 = = =
( 23 ν 4 − 2149 ν 3 − 937787 ν 2 + 43530685 ν + 2494737468 ) / 460080 ( 23\nu^{4} - 2149\nu^{3} - 937787\nu^{2} + 43530685\nu + 2494737468 ) / 460080 ( 2 3 ν 4 − 2 1 4 9 ν 3 − 9 3 7 7 8 7 ν 2 + 4 3 5 3 0 6 8 5 ν + 2 4 9 4 7 3 7 4 6 8 ) / 4 6 0 0 8 0
(23*v^4 - 2149*v^3 - 937787*v^2 + 43530685*v + 2494737468) / 460080
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
− 4 β 4 − β 3 − 3 β 2 + 12 β 1 + 24326 -4\beta_{4} - \beta_{3} - 3\beta_{2} + 12\beta _1 + 24326 − 4 β 4 − β 3 − 3 β 2 + 1 2 β 1 + 2 4 3 2 6
-4*b4 - b3 - 3*b2 + 12*b1 + 24326
ν 3 \nu^{3} ν 3 = = =
− 336 β 4 + 240 β 3 − 384 β 2 + 37309 β 1 + 241788 -336\beta_{4} + 240\beta_{3} - 384\beta_{2} + 37309\beta _1 + 241788 − 3 3 6 β 4 + 2 4 0 β 3 − 3 8 4 β 2 + 3 7 3 0 9 β 1 + 2 4 1 7 8 8
-336*b4 + 240*b3 - 384*b2 + 37309*b1 + 241788
ν 4 \nu^{4} ν 4 = = =
− 174484 β 4 − 18349 β 3 − 158199 β 2 + 2082600 β 1 + 905977022 -174484\beta_{4} - 18349\beta_{3} - 158199\beta_{2} + 2082600\beta _1 + 905977022 − 1 7 4 4 8 4 β 4 − 1 8 3 4 9 β 3 − 1 5 8 1 9 9 β 2 + 2 0 8 2 6 0 0 β 1 + 9 0 5 9 7 7 0 2 2
-174484*b4 - 18349*b3 - 158199*b2 + 2082600*b1 + 905977022
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 10 n e w ( Γ 0 ( 338 ) ) S_{10}^{\mathrm{new}}(\Gamma_0(338)) S 1 0 n e w ( Γ 0 ( 3 3 8 ) ) :
T 3 5 − 81 T 3 4 − 58201 T 3 3 + 2522001 T 3 2 + 682140456 T 3 − 35717361264 T_{3}^{5} - 81T_{3}^{4} - 58201T_{3}^{3} + 2522001T_{3}^{2} + 682140456T_{3} - 35717361264 T 3 5 − 8 1 T 3 4 − 5 8 2 0 1 T 3 3 + 2 5 2 2 0 0 1 T 3 2 + 6 8 2 1 4 0 4 5 6 T 3 − 3 5 7 1 7 3 6 1 2 6 4
T3^5 - 81*T3^4 - 58201*T3^3 + 2522001*T3^2 + 682140456*T3 - 35717361264
T 5 5 − 1213 T 5 4 − 3219353 T 5 3 − 43240635 T 5 2 + 1783123495200 T 5 + 625791896442000 T_{5}^{5} - 1213T_{5}^{4} - 3219353T_{5}^{3} - 43240635T_{5}^{2} + 1783123495200T_{5} + 625791896442000 T 5 5 − 1 2 1 3 T 5 4 − 3 2 1 9 3 5 3 T 5 3 − 4 3 2 4 0 6 3 5 T 5 2 + 1 7 8 3 1 2 3 4 9 5 2 0 0 T 5 + 6 2 5 7 9 1 8 9 6 4 4 2 0 0 0
T5^5 - 1213*T5^4 - 3219353*T5^3 - 43240635*T5^2 + 1783123495200*T5 + 625791896442000
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 16 ) 5 (T - 16)^{5} ( T − 1 6 ) 5
(T - 16)^5
3 3 3
T 5 + ⋯ − 35717361264 T^{5} + \cdots - 35717361264 T 5 + ⋯ − 3 5 7 1 7 3 6 1 2 6 4
T^5 - 81*T^4 - 58201*T^3 + 2522001*T^2 + 682140456*T - 35717361264
5 5 5
T 5 + ⋯ + 625791896442000 T^{5} + \cdots + 625791896442000 T 5 + ⋯ + 6 2 5 7 9 1 8 9 6 4 4 2 0 0 0
T^5 - 1213*T^4 - 3219353*T^3 - 43240635*T^2 + 1783123495200*T + 625791896442000
7 7 7
T 5 + ⋯ − 11 ⋯ 20 T^{5} + \cdots - 11\!\cdots\!20 T 5 + ⋯ − 1 1 ⋯ 2 0
T^5 + 8715*T^4 - 82262005*T^3 - 461568639567*T^2 + 2184175185983028*T - 1169711528823831420
11 11 1 1
T 5 + ⋯ + 23 ⋯ 00 T^{5} + \cdots + 23\!\cdots\!00 T 5 + ⋯ + 2 3 ⋯ 0 0
T^5 - 4392*T^4 - 7527916332*T^3 + 106747837580160*T^2 + 7951190271531955200*T + 23359961422237999104000
13 13 1 3
T 5 T^{5} T 5
T^5
17 17 1 7
T 5 + ⋯ − 44 ⋯ 76 T^{5} + \cdots - 44\!\cdots\!76 T 5 + ⋯ − 4 4 ⋯ 7 6
T^5 + 537741*T^4 - 266304414973*T^3 - 203785593216070101*T^2 - 31892543116217313668712*T - 449766601932791015625216276
19 19 1 9
T 5 + ⋯ − 30 ⋯ 80 T^{5} + \cdots - 30\!\cdots\!80 T 5 + ⋯ − 3 0 ⋯ 8 0
T^5 + 62862*T^4 - 777128076576*T^3 + 125716468620116736*T^2 + 121501338373633547526768*T - 30714951285181792741865107680
23 23 2 3
T 5 + ⋯ − 24 ⋯ 00 T^{5} + \cdots - 24\!\cdots\!00 T 5 + ⋯ − 2 4 ⋯ 0 0
T^5 - 2304186*T^4 - 3232396078852*T^3 + 7652571688484419368*T^2 + 1173935634968248530505344*T - 2434496653706520210415957440000
29 29 2 9
T 5 + ⋯ + 24 ⋯ 00 T^{5} + \cdots + 24\!\cdots\!00 T 5 + ⋯ + 2 4 ⋯ 0 0
T^5 + 4749348*T^4 - 20830470731068*T^3 - 92439856534708613376*T^2 + 82834835078095410959170560*T + 247922232266793296237614306099200
31 31 3 1
T 5 + ⋯ + 11 ⋯ 00 T^{5} + \cdots + 11\!\cdots\!00 T 5 + ⋯ + 1 1 ⋯ 0 0
T^5 + 13160376*T^4 - 2074405728652*T^3 - 446207774135071763712*T^2 - 1014040661199368089178845440*T + 11640478481754987864897115545600
37 37 3 7
T 5 + ⋯ − 21 ⋯ 24 T^{5} + \cdots - 21\!\cdots\!24 T 5 + ⋯ − 2 1 ⋯ 2 4
T^5 + 19080099*T^4 + 25644233283479*T^3 - 1540752014548463036907*T^2 - 11039136163188862338002274048*T - 21985555626613331513084366782311024
41 41 4 1
T 5 + ⋯ − 55 ⋯ 00 T^{5} + \cdots - 55\!\cdots\!00 T 5 + ⋯ − 5 5 ⋯ 0 0
T^5 - 8434304*T^4 - 426774041317568*T^3 + 4271075934710601369600*T^2 + 5582349187663180502473113600*T - 55910772903514934023058381340672000
43 43 4 3
T 5 + ⋯ + 17 ⋯ 00 T^{5} + \cdots + 17\!\cdots\!00 T 5 + ⋯ + 1 7 ⋯ 0 0
T^5 + 25704881*T^4 - 1477915644131849*T^3 - 30735838722874261771249*T^2 + 351295336550525424712467357016*T + 1763042474770768597769748843127881200
47 47 4 7
T 5 + ⋯ − 79 ⋯ 96 T^{5} + \cdots - 79\!\cdots\!96 T 5 + ⋯ − 7 9 ⋯ 9 6
T^5 + 27047883*T^4 - 1745308305373221*T^3 + 66326189803389953217*T^2 + 195860925919361736263803054068*T - 792127204145989817856869385286506396
53 53 5 3
T 5 + ⋯ + 84 ⋯ 00 T^{5} + \cdots + 84\!\cdots\!00 T 5 + ⋯ + 8 4 ⋯ 0 0
T^5 + 48759270*T^4 - 6784638071718600*T^3 - 288659699531451926199216*T^2 + 5253357711351637365443155488528*T + 84678421905423226371618754289201916000
59 59 5 9
T 5 + ⋯ + 61 ⋯ 48 T^{5} + \cdots + 61\!\cdots\!48 T 5 + ⋯ + 6 1 ⋯ 4 8
T^5 - 171497614*T^4 + 4258509961783936*T^3 + 246542195742496290805824*T^2 + 823580926973224536331049168880*T + 61664660102075448621296607008967648
61 61 6 1
T 5 + ⋯ − 16 ⋯ 00 T^{5} + \cdots - 16\!\cdots\!00 T 5 + ⋯ − 1 6 ⋯ 0 0
T^5 + 35079548*T^4 - 17647375877917916*T^3 - 92428222516025774385184*T^2 + 74581111236291905738649779237632*T - 1622963785195952606744580207306376960000
67 67 6 7
T 5 + ⋯ + 62 ⋯ 92 T^{5} + \cdots + 62\!\cdots\!92 T 5 + ⋯ + 6 2 ⋯ 9 2
T^5 - 95187276*T^4 - 55838151972373564*T^3 + 813075834112442137571376*T^2 + 303558059165054731267619204671680*T + 6262539223362413348664093712741739073792
71 71 7 1
T 5 + ⋯ + 12 ⋯ 00 T^{5} + \cdots + 12\!\cdots\!00 T 5 + ⋯ + 1 2 ⋯ 0 0
T^5 + 140119209*T^4 - 186215604400095885*T^3 - 25324341987869695199890125*T^2 + 8207313966731472005111566820512500*T + 1260721985584491267634530193900744144687500
73 73 7 3
T 5 + ⋯ + 13 ⋯ 00 T^{5} + \cdots + 13\!\cdots\!00 T 5 + ⋯ + 1 3 ⋯ 0 0
T^5 + 332164038*T^4 - 78065249182792612*T^3 - 32784207049995265794500184*T^2 - 1659823636111952692424236009090560*T + 135173460558687542950179479485069692633600
79 79 7 9
T 5 + ⋯ + 87 ⋯ 00 T^{5} + \cdots + 87\!\cdots\!00 T 5 + ⋯ + 8 7 ⋯ 0 0
T^5 - 318519174*T^4 - 174572393278529508*T^3 + 20043556553168576419655384*T^2 + 11158130618791891543030113817908480*T + 870500240055043416746061386149469256652800
83 83 8 3
T 5 + ⋯ − 22 ⋯ 08 T^{5} + \cdots - 22\!\cdots\!08 T 5 + ⋯ − 2 2 ⋯ 0 8
T^5 + 623574146*T^4 - 333383838301944512*T^3 - 218500357544048130340118976*T^2 - 16589066174708450552298183428168976*T - 229195292598062963736312290669300170322208
89 89 8 9
T 5 + ⋯ + 87 ⋯ 08 T^{5} + \cdots + 87\!\cdots\!08 T 5 + ⋯ + 8 7 ⋯ 0 8
T^5 + 1327892442*T^4 - 678492931953967524*T^3 - 1292422337127830558155887144*T^2 - 198618634456198072106669617928145408*T + 87437144710268264825260757889603356030750208
97 97 9 7
T 5 + ⋯ + 59 ⋯ 76 T^{5} + \cdots + 59\!\cdots\!76 T 5 + ⋯ + 5 9 ⋯ 7 6
T^5 + 1024350060*T^4 - 994931048221353360*T^3 - 1138127177104406963102119104*T^2 - 254956402729200145091028457146863616*T + 59580103498438809562043084317005888946176
show more
show less