L(s) = 1 | + 8·2-s + 12·3-s + 64·4-s + 210·5-s + 96·6-s − 1.01e3·7-s + 512·8-s − 2.04e3·9-s + 1.68e3·10-s − 1.09e3·11-s + 768·12-s − 8.12e3·14-s + 2.52e3·15-s + 4.09e3·16-s + 1.47e4·17-s − 1.63e4·18-s + 3.99e4·19-s + 1.34e4·20-s − 1.21e4·21-s − 8.73e3·22-s + 6.87e4·23-s + 6.14e3·24-s − 3.40e4·25-s − 5.07e4·27-s − 6.50e4·28-s − 1.02e5·29-s + 2.01e4·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.256·3-s + 1/2·4-s + 0.751·5-s + 0.181·6-s − 1.11·7-s + 0.353·8-s − 0.934·9-s + 0.531·10-s − 0.247·11-s + 0.128·12-s − 0.791·14-s + 0.192·15-s + 1/4·16-s + 0.725·17-s − 0.660·18-s + 1.33·19-s + 0.375·20-s − 0.287·21-s − 0.174·22-s + 1.17·23-s + 0.0907·24-s − 0.435·25-s − 0.496·27-s − 0.559·28-s − 0.780·29-s + 0.136·30-s + ⋯ |
Λ(s)=(=(338s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(338s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p3T |
| 13 | 1 |
good | 3 | 1−4pT+p7T2 |
| 5 | 1−42pT+p7T2 |
| 7 | 1+1016T+p7T2 |
| 11 | 1+1092T+p7T2 |
| 17 | 1−14706T+p7T2 |
| 19 | 1−39940T+p7T2 |
| 23 | 1−68712T+p7T2 |
| 29 | 1+102570T+p7T2 |
| 31 | 1+227552T+p7T2 |
| 37 | 1+160526T+p7T2 |
| 41 | 1+10842T+p7T2 |
| 43 | 1+630748T+p7T2 |
| 47 | 1+472656T+p7T2 |
| 53 | 1+1494018T+p7T2 |
| 59 | 1+2640660T+p7T2 |
| 61 | 1−827702T+p7T2 |
| 67 | 1−126004T+p7T2 |
| 71 | 1−1414728T+p7T2 |
| 73 | 1+980282T+p7T2 |
| 79 | 1+3566800T+p7T2 |
| 83 | 1+5672892T+p7T2 |
| 89 | 1−11951190T+p7T2 |
| 97 | 1+8682146T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.746610323900973845929221721053, −9.214058044421978784169606051333, −7.83875535096920157374866104606, −6.80092325386742094856364294842, −5.77882889297338417001213472479, −5.21259867905917548975749469445, −3.43428918396002331413868064883, −2.97484543524493841640401803976, −1.62539192687212449331708170076, 0,
1.62539192687212449331708170076, 2.97484543524493841640401803976, 3.43428918396002331413868064883, 5.21259867905917548975749469445, 5.77882889297338417001213472479, 6.80092325386742094856364294842, 7.83875535096920157374866104606, 9.214058044421978784169606051333, 9.746610323900973845929221721053