Properties

Label 2-338-1.1-c7-0-77
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $105.586$
Root an. cond. $10.2755$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 12·3-s + 64·4-s + 210·5-s + 96·6-s − 1.01e3·7-s + 512·8-s − 2.04e3·9-s + 1.68e3·10-s − 1.09e3·11-s + 768·12-s − 8.12e3·14-s + 2.52e3·15-s + 4.09e3·16-s + 1.47e4·17-s − 1.63e4·18-s + 3.99e4·19-s + 1.34e4·20-s − 1.21e4·21-s − 8.73e3·22-s + 6.87e4·23-s + 6.14e3·24-s − 3.40e4·25-s − 5.07e4·27-s − 6.50e4·28-s − 1.02e5·29-s + 2.01e4·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.256·3-s + 1/2·4-s + 0.751·5-s + 0.181·6-s − 1.11·7-s + 0.353·8-s − 0.934·9-s + 0.531·10-s − 0.247·11-s + 0.128·12-s − 0.791·14-s + 0.192·15-s + 1/4·16-s + 0.725·17-s − 0.660·18-s + 1.33·19-s + 0.375·20-s − 0.287·21-s − 0.174·22-s + 1.17·23-s + 0.0907·24-s − 0.435·25-s − 0.496·27-s − 0.559·28-s − 0.780·29-s + 0.136·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(105.586\)
Root analytic conductor: \(10.2755\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{3} T \)
13 \( 1 \)
good3 \( 1 - 4 p T + p^{7} T^{2} \)
5 \( 1 - 42 p T + p^{7} T^{2} \)
7 \( 1 + 1016 T + p^{7} T^{2} \)
11 \( 1 + 1092 T + p^{7} T^{2} \)
17 \( 1 - 14706 T + p^{7} T^{2} \)
19 \( 1 - 39940 T + p^{7} T^{2} \)
23 \( 1 - 68712 T + p^{7} T^{2} \)
29 \( 1 + 102570 T + p^{7} T^{2} \)
31 \( 1 + 227552 T + p^{7} T^{2} \)
37 \( 1 + 160526 T + p^{7} T^{2} \)
41 \( 1 + 10842 T + p^{7} T^{2} \)
43 \( 1 + 630748 T + p^{7} T^{2} \)
47 \( 1 + 472656 T + p^{7} T^{2} \)
53 \( 1 + 1494018 T + p^{7} T^{2} \)
59 \( 1 + 2640660 T + p^{7} T^{2} \)
61 \( 1 - 827702 T + p^{7} T^{2} \)
67 \( 1 - 126004 T + p^{7} T^{2} \)
71 \( 1 - 1414728 T + p^{7} T^{2} \)
73 \( 1 + 980282 T + p^{7} T^{2} \)
79 \( 1 + 3566800 T + p^{7} T^{2} \)
83 \( 1 + 5672892 T + p^{7} T^{2} \)
89 \( 1 - 11951190 T + p^{7} T^{2} \)
97 \( 1 + 8682146 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.746610323900973845929221721053, −9.214058044421978784169606051333, −7.83875535096920157374866104606, −6.80092325386742094856364294842, −5.77882889297338417001213472479, −5.21259867905917548975749469445, −3.43428918396002331413868064883, −2.97484543524493841640401803976, −1.62539192687212449331708170076, 0, 1.62539192687212449331708170076, 2.97484543524493841640401803976, 3.43428918396002331413868064883, 5.21259867905917548975749469445, 5.77882889297338417001213472479, 6.80092325386742094856364294842, 7.83875535096920157374866104606, 9.214058044421978784169606051333, 9.746610323900973845929221721053

Graph of the $Z$-function along the critical line